AbenzaFran commited on
Commit
a7cca91
·
verified ·
1 Parent(s): 987a418

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -58
app.py CHANGED
@@ -4,83 +4,34 @@ from dotenv import load_dotenv
4
  load_dotenv()
5
 
6
  from langchain.agents.openai_assistant import OpenAIAssistantRunnable
 
 
7
  from langchain.schema import HumanMessage, AIMessage
8
 
9
- import gradio as gr
10
 
11
- # Load API key and assistant IDs
12
  api_key = os.getenv('OPENAI_API_KEY')
13
- extractor_agents = {
14
- "Solution Specifier A": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_A'),
15
- "Solution Specifier A1": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_A1'),
16
- }
17
 
18
- # Function to create a new extractor LLM instance
19
- def get_extractor_llm(agent_id):
20
- return OpenAIAssistantRunnable(assistant_id=agent_id, api_key=api_key, as_agent=True)
21
 
22
- # Utility function to remove citations
23
  def remove_citation(text):
24
  # Define the regex pattern to match the citation format 【number†text】
25
  pattern = r"【\d+†\w+】"
26
  # Replace the pattern with an empty string
27
  return re.sub(pattern, "📚", text)
28
 
29
- # Prediction function
30
- def predict(message, history, selected_agent):
31
- # Get the extractor LLM for the selected agent
32
- agent_id = extractor_agents[selected_agent]
33
- extractor_llm = get_extractor_llm(agent_id)
34
-
35
- # Prepare the chat history
36
  history_langchain_format = []
37
  for human, ai in history:
38
  history_langchain_format.append(HumanMessage(content=human))
39
  history_langchain_format.append(AIMessage(content=ai))
40
  history_langchain_format.append(HumanMessage(content=message))
41
-
42
- # Get the response
43
  gpt_response = extractor_llm.invoke({"content": message})
44
  output = gpt_response.return_values["output"]
45
  non_cited_output = remove_citation(output)
46
  return non_cited_output
47
 
48
- # Define the Gradio interface using Blocks for layout
49
- def app_interface():
50
- with gr.Blocks(
51
- css="""
52
- .container {
53
- max-width: 100% !important;
54
- padding: 0 !important;
55
- }
56
- .main-div {
57
- height: 100vh;
58
- display: flex;
59
- flex-direction: column;
60
- }
61
- .chat-div {
62
- flex-grow: 1;
63
- min-height: 0;
64
- }
65
- """
66
- ) as demo:
67
- with gr.Column(elem_classes="main-div"):
68
- dropdown = gr.Dropdown(
69
- choices=list(extractor_agents.keys()),
70
- value="Solution Specifier A",
71
- label="Choose Extractor Agent",
72
- interactive=True,
73
- container=True
74
- )
75
- chat = gr.ChatInterface(
76
- fn=predict,
77
- additional_inputs=[dropdown],
78
- title="Solution Specifier Chat",
79
- description="Test with different solution specifiers",
80
- elem_classes="chat-div"
81
- )
82
- return demo
83
-
84
- # Launch the app
85
- chat_interface = app_interface()
86
- chat_interface.launch(share=True)
 
4
  load_dotenv()
5
 
6
  from langchain.agents.openai_assistant import OpenAIAssistantRunnable
7
+ from langchain.agents import AgentExecutor
8
+
9
  from langchain.schema import HumanMessage, AIMessage
10
 
11
+ import gradio
12
 
 
13
  api_key = os.getenv('OPENAI_API_KEY')
14
+ extractor_agent = os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_A')
 
 
 
15
 
16
+ extractor_llm = OpenAIAssistantRunnable(assistant_id=extractor_agent, api_key=api_key, as_agent=True)
 
 
17
 
 
18
  def remove_citation(text):
19
  # Define the regex pattern to match the citation format 【number†text】
20
  pattern = r"【\d+†\w+】"
21
  # Replace the pattern with an empty string
22
  return re.sub(pattern, "📚", text)
23
 
24
+ def predict(message, history):
 
 
 
 
 
 
25
  history_langchain_format = []
26
  for human, ai in history:
27
  history_langchain_format.append(HumanMessage(content=human))
28
  history_langchain_format.append(AIMessage(content=ai))
29
  history_langchain_format.append(HumanMessage(content=message))
 
 
30
  gpt_response = extractor_llm.invoke({"content": message})
31
  output = gpt_response.return_values["output"]
32
  non_cited_output = remove_citation(output)
33
  return non_cited_output
34
 
35
+ #gradio.Markdown("Click [here](https://www.google.com) to visit Google.")
36
+ chat = gradio.ChatInterface(predict, title="Solution Specifier A", description="testing for the time being")
37
+ chat.launch(share=True)