AbenzaFran commited on
Commit
a828de0
·
verified ·
1 Parent(s): 033a1c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -55
app.py CHANGED
@@ -1,64 +1,37 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
+ import re
3
+ from dotenv import load_dotenv
4
+ load_dotenv()
5
 
6
+ from langchain.agents.openai_assistant import OpenAIAssistantRunnable
7
+ from langchain.agents import AgentExecutor
 
 
8
 
9
+ from langchain.schema import HumanMessage, AIMessage
10
 
11
+ import gradio
 
 
 
 
 
 
 
 
12
 
13
+ api_key = os.getenv('OPENAI_API_KEY')
14
+ extractor_agent = os.getenv('ASSISTANT_ID_DECASTRO')
 
 
 
15
 
16
+ extractor_llm = OpenAIAssistantRunnable(assistant_id=extractor_agent, api_key=api_key, as_agent=True)
17
 
 
18
 
19
+ def remove_citation(text):
20
+ # Define the regex pattern to match the citation format 【number†text】
21
+ pattern = r"【\d+†\w+】"
22
+ # Replace the pattern with an empty string
23
+ return re.sub(pattern, "📚", text)
 
 
 
24
 
25
+ def predict(message, history):
26
+ history_langchain_format = []
27
+ for human, ai in history:
28
+ history_langchain_format.append(HumanMessage(content=human))
29
+ history_langchain_format.append(AIMessage(content=ai))
30
+ history_langchain_format.append(HumanMessage(content=message))
31
+ gpt_response = extractor_llm.invoke({"content": message})
32
+ output = gpt_response.return_values["output"]
33
+ non_cited_output = remove_citation(output)
34
+ return non_cited_output
35
 
36
+ chat = gradio.ChatInterface(predict, title="Solution Specifier", description="testing for the time being")
37
+ chat.launch(share=True)