Update app.py
Browse files
app.py
CHANGED
@@ -4,35 +4,60 @@ from dotenv import load_dotenv
|
|
4 |
load_dotenv()
|
5 |
|
6 |
from langchain.agents.openai_assistant import OpenAIAssistantRunnable
|
7 |
-
from langchain.agents import AgentExecutor
|
8 |
-
|
9 |
from langchain.schema import HumanMessage, AIMessage
|
10 |
|
11 |
-
import gradio
|
12 |
|
|
|
13 |
api_key = os.getenv('OPENAI_API_KEY')
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def remove_citation(text):
|
20 |
# Define the regex pattern to match the citation format 【number†text】
|
21 |
pattern = r"【\d+†\w+】"
|
22 |
# Replace the pattern with an empty string
|
23 |
return re.sub(pattern, "📚", text)
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
history_langchain_format = []
|
27 |
for human, ai in history:
|
28 |
history_langchain_format.append(HumanMessage(content=human))
|
29 |
history_langchain_format.append(AIMessage(content=ai))
|
30 |
history_langchain_format.append(HumanMessage(content=message))
|
|
|
|
|
31 |
gpt_response = extractor_llm.invoke({"content": message})
|
32 |
output = gpt_response.return_values["output"]
|
33 |
non_cited_output = remove_citation(output)
|
34 |
return non_cited_output
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
load_dotenv()
|
5 |
|
6 |
from langchain.agents.openai_assistant import OpenAIAssistantRunnable
|
|
|
|
|
7 |
from langchain.schema import HumanMessage, AIMessage
|
8 |
|
9 |
+
import gradio as gr
|
10 |
|
11 |
+
# Load API key and assistant IDs
|
12 |
api_key = os.getenv('OPENAI_API_KEY')
|
13 |
+
extractor_agents = {
|
14 |
+
"Solution Specifier A": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_A'),
|
15 |
+
"Solution Specifier B": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_B'),
|
16 |
+
"Solution Specifier C": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_C'),
|
17 |
+
"Solution Specifier D": os.getenv('ASSISTANT_ID_SOLUTION_SPECIFIER_D'),
|
18 |
+
}
|
19 |
+
|
20 |
+
# Function to create a new extractor LLM instance
|
21 |
+
def get_extractor_llm(agent_id):
|
22 |
+
return OpenAIAssistantRunnable(assistant_id=agent_id, api_key=api_key, as_agent=True)
|
23 |
+
|
24 |
+
# Utility function to remove citations
|
25 |
def remove_citation(text):
|
26 |
# Define the regex pattern to match the citation format 【number†text】
|
27 |
pattern = r"【\d+†\w+】"
|
28 |
# Replace the pattern with an empty string
|
29 |
return re.sub(pattern, "📚", text)
|
30 |
|
31 |
+
# Prediction function
|
32 |
+
def predict(message, history, selected_agent):
|
33 |
+
# Get the extractor LLM for the selected agent
|
34 |
+
agent_id = extractor_agents[selected_agent]
|
35 |
+
extractor_llm = get_extractor_llm(agent_id)
|
36 |
+
|
37 |
+
# Prepare the chat history
|
38 |
history_langchain_format = []
|
39 |
for human, ai in history:
|
40 |
history_langchain_format.append(HumanMessage(content=human))
|
41 |
history_langchain_format.append(AIMessage(content=ai))
|
42 |
history_langchain_format.append(HumanMessage(content=message))
|
43 |
+
|
44 |
+
# Get the response
|
45 |
gpt_response = extractor_llm.invoke({"content": message})
|
46 |
output = gpt_response.return_values["output"]
|
47 |
non_cited_output = remove_citation(output)
|
48 |
return non_cited_output
|
49 |
|
50 |
+
# Define the Gradio interface
|
51 |
+
def app_interface():
|
52 |
+
dropdown = gr.Dropdown(choices=list(extractor_agents.keys()), value="Solution Specifier A", label="Choose Extractor Agent")
|
53 |
+
chat = gr.ChatInterface(
|
54 |
+
fn=lambda message, history, selected_agent: predict(message, history, selected_agent),
|
55 |
+
inputs=[dropdown],
|
56 |
+
title="Solution Specifier Chat",
|
57 |
+
description="Test with different solution specifiers"
|
58 |
+
)
|
59 |
+
return chat
|
60 |
+
|
61 |
+
# Launch the app
|
62 |
+
chat_interface = app_interface()
|
63 |
+
chat_interface.launch(share=True)
|