saritha5's picture
Update app.py
a27ba06
raw
history blame
5.08 kB
import numpy as np
import matplotlib.pylab as plt
import ruptures as rpt
import streamlit as st
from ruptures.metrics import precision_recall
from ruptures.metrics import hausdorff
from ruptures.metrics import randindex
st.title("Change Point Detection")
# Generating Signal
def pw_constant_input(n,dim,n_bkps,sigma):
"""Piecewise constant (pw_constant)"""
# n, dim # number of samples, dimension
# n_bkps, sigma # number of change points, noise standard deviation
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)
rpt.display(signal, bkps)
return signal,bkps
def pw_linear_input(n,dim,n_bkps,sigma):
"""Piecewise Linear"""
# creation of data
# n, dim = 500, 3 # number of samples, dimension of the covariates
# n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_linear(n, dim, n_bkps, noise_std=sigma)
rpt.display(signal, bkps)
return signal,bkps
def pw_normal_input(n,dim,n_bkps,sigma):
"""Piecewise 2D Gaussian process (pw_normal)#"""
# creation of data
#n = 500 # number of samples
#n_bkps = 3 # number of change points
signal, bkps = rpt.pw_normal(n, n_bkps)
rpt.display(signal, bkps)
return signal,bkps
def pw_wavy_input(n,dim,n_bkps,sigma):
# creation of data
#n, dim = 500, 3 # number of samples, dimension
#n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
signal, bkps = rpt.pw_wavy(n, n_bkps, noise_std=sigma)
rpt.display(signal, bkps)
return signal,bkps
input_list = ['piecewiseConstant','piecewiseLinear','piecewiseNormal','piecewiseSinusoidal']
generate_signal = st.selectbox(label = "Choose an input signal", options = input_list)
n,dim,n_bkps,sigma = st.columns(4)
with n:
n= st.number_input('No of Samples',min_value=100,step=1)
with dim:
dim = st.number_input('No of dimesions',min_value=1,max_value = 5,step=1)
with n_bkps:
n_bkps = st.number_input('No of breakpoints',min_value=2,step=1)
with sigma:
sigma = st.number_input('Variance',min_value=1,max_value=4,step=1)
if generate_signal == 'piecewiseConstant':
signal,bkps = pw_constant_input(n,dim,n_bkps,sigma)
elif generate_signal== 'piecewiseLinear':
signal,bkps = pw_linear_input(n,dim,n_bkps,sigma)
elif generate_signal == 'piecewiseNormal':
signal,bkps = pw_normal_input(n,dim,n_bkps,sigma)
else:
signal,bkps= pw_wavy_input(n,dim,n_bkps,sigma)
fig, axarr = rpt.display(signal,bkps)
st.pyplot(fig)
def dynp_method(signal,bkps,n_bkps):
# change point detection
model = "l1" # "l2", "rbf"
algo = rpt.Dynp(model=model, min_size=3, jump=5).fit(signal)
my_bkps = algo.predict(n_bkps)
# show results
fig,axarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 2))
#plt.show()
st.pyplot(fig)
return my_bkps
def pelt_method(signal,bkps,n_bkps):
# change point detection
model = "l1" # "l2", "rbf"
algo = rpt.Pelt(model=model, min_size=3, jump=5).fit(signal)
my_bkps = algo.predict(pen=n_bkps)
# show results
fig, ax_arr = rpt.display(signal, bkps, my_bkps, figsize=(10, 2))
st.pyplot(fig)
return my_bkps
def bin_seg_method(signal,bkps,n_bkps):
# change point detection
model = "l2" # "l1", "rbf", "linear", "normal", "ar",...
algo = rpt.Binseg(model=model).fit(signal)
my_bkps = algo.predict(n_bkps)
# show results
fg,axxarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 2))
st.pyplot(fig)
return my_bkps
def bot_up_seg(signal,bkps,n_bkps):
# change point detection
model = "l2" # "l1", "rbf", "linear", "normal", "ar",...
algo = rpt.Binseg(model=model).fit(signal)
my_bkps = algo.predict(n_bkps)
# show results
fig,axxar = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 2))
st.pyplot(fig)
return my_bkps
def win_sli_seg(signal,bkps,n_bkps):
# change point detection
model = "l2" # "l1", "rbf", "linear", "normal", "ar"
algo = rpt.Window(width=40, model=model).fit(signal)
my_bkps = algo.predict(n_bkps)
# show results
fig,axxar= rpt.show.display(signal, bkps, my_bkps, figsize=(10, 2))
st.pyplot(fig)
return my_bkps
searchmethod_list = ['Dynamic Programming','Pelt','Binary Segmentation','Bottom-up Segmentation','Window sliding segmentation']
detection_model = st.selectbox(label = "Choose a Detection Method",options = searchmethod_list)
if detection_model== 'Dynamic Programming':
bkps1 = dynp_method(signal,bkps,n_bkps)
elif detection_model=='Pelt':
bkps1 = pelt_method(signal,bkps,n_bkps)
elif detection_model=='Binary Segmentation':
bkps1 = bin_seg_method(signal,bkps,n_bkps)
elif detection_model=='Bottom-up Segmentation':
bkps1 = bot_up_seg(signal,bkps,n_bkps)
else:
bkps1 = win_sli_seg(signal,bkps,n_bkps)
p, r = precision_recall(bkps, bkps1)
st.header('Precision and Recall')
st.write(p, r)
st.header('Hausdorff metric')
st.write(hausdorff(bkps, bkps1))
st.header('Rand index')
st.write(randindex(bkps, bkps1))