Spaces:
Sleeping
Sleeping
import numpy as np | |
import matplotlib.pylab as plt | |
import ruptures as rpt | |
import streamlit as st | |
from ruptures.metrics import precision_recall | |
from ruptures.metrics import hausdorff | |
from ruptures.metrics import randindex | |
st.title("Change Point Detection") | |
# Generating Signal | |
def pw_constant_input(n,dim,n_bkps,sigma): | |
"""Piecewise constant (pw_constant)""" | |
# n, dim # number of samples, dimension | |
# n_bkps, sigma # number of change points, noise standard deviation | |
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma) | |
rpt.display(signal, bkps) | |
return signal,bkps | |
def pw_linear_input(n,dim,n_bkps,sigma): | |
"""Piecewise Linear""" | |
# creation of data | |
# n, dim = 500, 3 # number of samples, dimension of the covariates | |
# n_bkps, sigma = 3, 5 # number of change points, noise standart deviation | |
signal, bkps = rpt.pw_linear(n, dim, n_bkps, noise_std=sigma) | |
rpt.display(signal, bkps) | |
return signal,bkps | |
def pw_normal_input(n,dim,n_bkps,sigma): | |
"""Piecewise 2D Gaussian process (pw_normal)#""" | |
# creation of data | |
#n = 500 # number of samples | |
#n_bkps = 3 # number of change points | |
signal, bkps = rpt.pw_normal(n, n_bkps) | |
rpt.display(signal, bkps) | |
return signal,bkps | |
def pw_wavy_input(n,dim,n_bkps,sigma): | |
# creation of data | |
#n, dim = 500, 3 # number of samples, dimension | |
#n_bkps, sigma = 3, 5 # number of change points, noise standart deviation | |
signal, bkps = rpt.pw_wavy(n, n_bkps, noise_std=sigma) | |
rpt.display(signal, bkps) | |
return signal,bkps | |
input_list = ['piecewiseConstant','piecewiseLinear','piecewiseNormal','piecewiseSinusoidal'] | |
generate_signal = st.selectbox(label = "Choose an input signal", options = input_list) | |