saritha5 commited on
Commit
1288e94
·
1 Parent(s): 3ef3bdb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -144
app.py CHANGED
@@ -9,147 +9,3 @@ from ruptures.metrics import randindex
9
  st.title("Change Point Detection")
10
  # Generating Signal
11
 
12
- def pw_constant_input(n,dim,n_bkps,sigma):
13
- """Piecewise constant (pw_constant)"""
14
- # n, dim # number of samples, dimension
15
- # n_bkps, sigma # number of change points, noise standard deviation
16
- signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)
17
- rpt.display(signal, bkps)
18
- return signal,bkps
19
-
20
- def pw_linear_input(n,dim,n_bkps,sigma):
21
- """Piecewise Linear"""
22
- # creation of data
23
- # n, dim = 500, 3 # number of samples, dimension of the covariates
24
- # n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
25
- signal, bkps = rpt.pw_linear(n, dim, n_bkps, noise_std=sigma)
26
- rpt.display(signal, bkps)
27
- return signal,bkps
28
-
29
- def pw_normal_input(n,dim,n_bkps,sigma):
30
- """Piecewise 2D Gaussian process (pw_normal)#"""
31
- # creation of data
32
- #n = 500 # number of samples
33
- #n_bkps = 3 # number of change points
34
- signal, bkps = rpt.pw_normal(n, n_bkps)
35
- rpt.display(signal, bkps)
36
- return signal,bkps
37
-
38
- def pw_wavy_input(n,dim,n_bkps,sigma):
39
- # creation of data
40
- #n, dim = 500, 3 # number of samples, dimension
41
- #n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
42
- signal, bkps = rpt.pw_wavy(n, n_bkps, noise_std=sigma)
43
- rpt.display(signal, bkps)
44
- return signal,bkps
45
-
46
- input_list = ['piecewiseConstant','piecewiseLinear','piecewiseNormal','piecewiseSinusoidal']
47
- generate_signal = st.selectbox(label = "Choose an input signal", options = input_list)
48
-
49
-
50
-
51
- n,dim,n_bkps,sigma = st.columns(4)
52
- with n:
53
- n= st.number_input('No of Samples',min_value=100,step=1)
54
- with dim:
55
- dim = st.number_input('No of dimesions',min_value=1,max_value = 5,step=1)
56
- with n_bkps:
57
- n_bkps = st.number_input('No of breakpoints',min_value=2,step=1)
58
- with sigma:
59
- sigma = st.number_input('Variance',min_value=1,max_value=4,step=1)
60
-
61
- if generate_signal == 'piecewiseConstant':
62
- signal,bkps = pw_constant_input(n,dim,n_bkps,sigma)
63
- elif generate_signal== 'piecewiseLinear':
64
- signal,bkps = pw_linear_input(n,dim,n_bkps,sigma)
65
- elif generate_signal == 'piecewiseNormal':
66
- signal,bkps = pw_normal_input(n,dim,n_bkps,sigma)
67
- else:
68
- signal,bkps= pw_wavy_input(n,dim,n_bkps,sigma)
69
-
70
- fig, axarr = rpt.display(signal,bkps)
71
- st.pyplot(fig)
72
-
73
- def dynp_method(signal,bkps,n_bkps):
74
- # change point detection
75
- model = "l1" # "l2", "rbf"
76
- algo = rpt.Dynp(model=model, min_size=3, jump=5).fit(signal)
77
- my_bkps = algo.predict(n_bkps)
78
- # show results
79
- fig,axarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
80
- #plt.show()
81
- st.pyplot(fig)
82
- return my_bkps
83
-
84
- def pelt_method(signal,bkps,n_bkps):
85
- # change point detection
86
- model = "l1" # "l2", "rbf"
87
- algo = rpt.Pelt(model=model, min_size=3, jump=5).fit(signal)
88
- my_bkps = algo.predict(pen=3)
89
-
90
- # show results
91
- fig, ax_arr = rpt.display(signal, bkps, my_bkps, figsize=(10, 6))
92
- st.pyplot(fig)
93
- return my_bkps
94
-
95
-
96
- def bin_seg_method(signal,bkps,n_bkps):
97
- # change point detection
98
- model = "l2" # "l1", "rbf", "linear", "normal", "ar",...
99
- algo = rpt.Binseg(model=model).fit(signal)
100
- my_bkps = algo.predict(n_bkps)
101
-
102
- # show results
103
- fg,axxarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
104
- st.pyplot(fig)
105
- return my_bkps
106
-
107
- def bot_up_seg(signal,bkps,n_bkps):
108
- # change point detection
109
- model = "l2" # "l1", "rbf", "linear", "normal", "ar",...
110
- algo = rpt.Binseg(model=model).fit(signal)
111
- my_bkps = algo.predict(n_bkps)
112
-
113
- # show results
114
- fig,axxar = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
115
- st.pyplot(fig)
116
- return my_bkps
117
-
118
- def win_sli_seg(signal,bkps,n_bkps):
119
- # change point detection
120
- model = "l2" # "l1", "rbf", "linear", "normal", "ar"
121
- algo = rpt.Window(width=40, model=model).fit(signal)
122
- my_bkps = algo.predict(n_bkps)
123
-
124
- # show results
125
- fig,axxar= rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
126
- st.pyplot(fig)
127
- return my_bkps
128
-
129
-
130
- searchmethod_list = ['Dynamic Programming','Pelt','Binary Segmentation','Bottom-up Segmentation','Window sliding segmentation']
131
- detection_model = st.selectbox(label = "Choose a Detection Method",options = searchmethod_list)
132
-
133
- if detection_model== 'Dynamic Programming':
134
- bkps1 = dynp_method(signal,bkps,n_bkps)
135
-
136
- elif detection_model=='Pelt':
137
- bkps1 = pelt_method(signal,bkps,n_bkps)
138
- elif detection_model=='Binary Segmentation':
139
- bkps1 = bin_seg_method(signal,bkps,n_bkps)
140
- elif detection_model=='Bottom-up Segmentation':
141
- bkps1 = bot_up_seg(signal,bkps,n_bkps)
142
- else:
143
- bkps1 = win_sli_seg(signal,bkps,n_bkps)
144
-
145
- p, r = precision_recall(bkps, bkps1)
146
- st.header('Precision and Recall')
147
- st.write(p, r)
148
-
149
- st.header('Hausdorff metric')
150
- st.write(hausdorff(bkps, bkps1))
151
-
152
- st.header('Rand index')
153
-
154
-
155
- st.write(randindex(bkps, bkps1))
 
9
  st.title("Change Point Detection")
10
  # Generating Signal
11