Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,147 +9,3 @@ from ruptures.metrics import randindex
|
|
9 |
st.title("Change Point Detection")
|
10 |
# Generating Signal
|
11 |
|
12 |
-
def pw_constant_input(n,dim,n_bkps,sigma):
|
13 |
-
"""Piecewise constant (pw_constant)"""
|
14 |
-
# n, dim # number of samples, dimension
|
15 |
-
# n_bkps, sigma # number of change points, noise standard deviation
|
16 |
-
signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma)
|
17 |
-
rpt.display(signal, bkps)
|
18 |
-
return signal,bkps
|
19 |
-
|
20 |
-
def pw_linear_input(n,dim,n_bkps,sigma):
|
21 |
-
"""Piecewise Linear"""
|
22 |
-
# creation of data
|
23 |
-
# n, dim = 500, 3 # number of samples, dimension of the covariates
|
24 |
-
# n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
|
25 |
-
signal, bkps = rpt.pw_linear(n, dim, n_bkps, noise_std=sigma)
|
26 |
-
rpt.display(signal, bkps)
|
27 |
-
return signal,bkps
|
28 |
-
|
29 |
-
def pw_normal_input(n,dim,n_bkps,sigma):
|
30 |
-
"""Piecewise 2D Gaussian process (pw_normal)#"""
|
31 |
-
# creation of data
|
32 |
-
#n = 500 # number of samples
|
33 |
-
#n_bkps = 3 # number of change points
|
34 |
-
signal, bkps = rpt.pw_normal(n, n_bkps)
|
35 |
-
rpt.display(signal, bkps)
|
36 |
-
return signal,bkps
|
37 |
-
|
38 |
-
def pw_wavy_input(n,dim,n_bkps,sigma):
|
39 |
-
# creation of data
|
40 |
-
#n, dim = 500, 3 # number of samples, dimension
|
41 |
-
#n_bkps, sigma = 3, 5 # number of change points, noise standart deviation
|
42 |
-
signal, bkps = rpt.pw_wavy(n, n_bkps, noise_std=sigma)
|
43 |
-
rpt.display(signal, bkps)
|
44 |
-
return signal,bkps
|
45 |
-
|
46 |
-
input_list = ['piecewiseConstant','piecewiseLinear','piecewiseNormal','piecewiseSinusoidal']
|
47 |
-
generate_signal = st.selectbox(label = "Choose an input signal", options = input_list)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
n,dim,n_bkps,sigma = st.columns(4)
|
52 |
-
with n:
|
53 |
-
n= st.number_input('No of Samples',min_value=100,step=1)
|
54 |
-
with dim:
|
55 |
-
dim = st.number_input('No of dimesions',min_value=1,max_value = 5,step=1)
|
56 |
-
with n_bkps:
|
57 |
-
n_bkps = st.number_input('No of breakpoints',min_value=2,step=1)
|
58 |
-
with sigma:
|
59 |
-
sigma = st.number_input('Variance',min_value=1,max_value=4,step=1)
|
60 |
-
|
61 |
-
if generate_signal == 'piecewiseConstant':
|
62 |
-
signal,bkps = pw_constant_input(n,dim,n_bkps,sigma)
|
63 |
-
elif generate_signal== 'piecewiseLinear':
|
64 |
-
signal,bkps = pw_linear_input(n,dim,n_bkps,sigma)
|
65 |
-
elif generate_signal == 'piecewiseNormal':
|
66 |
-
signal,bkps = pw_normal_input(n,dim,n_bkps,sigma)
|
67 |
-
else:
|
68 |
-
signal,bkps= pw_wavy_input(n,dim,n_bkps,sigma)
|
69 |
-
|
70 |
-
fig, axarr = rpt.display(signal,bkps)
|
71 |
-
st.pyplot(fig)
|
72 |
-
|
73 |
-
def dynp_method(signal,bkps,n_bkps):
|
74 |
-
# change point detection
|
75 |
-
model = "l1" # "l2", "rbf"
|
76 |
-
algo = rpt.Dynp(model=model, min_size=3, jump=5).fit(signal)
|
77 |
-
my_bkps = algo.predict(n_bkps)
|
78 |
-
# show results
|
79 |
-
fig,axarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
|
80 |
-
#plt.show()
|
81 |
-
st.pyplot(fig)
|
82 |
-
return my_bkps
|
83 |
-
|
84 |
-
def pelt_method(signal,bkps,n_bkps):
|
85 |
-
# change point detection
|
86 |
-
model = "l1" # "l2", "rbf"
|
87 |
-
algo = rpt.Pelt(model=model, min_size=3, jump=5).fit(signal)
|
88 |
-
my_bkps = algo.predict(pen=3)
|
89 |
-
|
90 |
-
# show results
|
91 |
-
fig, ax_arr = rpt.display(signal, bkps, my_bkps, figsize=(10, 6))
|
92 |
-
st.pyplot(fig)
|
93 |
-
return my_bkps
|
94 |
-
|
95 |
-
|
96 |
-
def bin_seg_method(signal,bkps,n_bkps):
|
97 |
-
# change point detection
|
98 |
-
model = "l2" # "l1", "rbf", "linear", "normal", "ar",...
|
99 |
-
algo = rpt.Binseg(model=model).fit(signal)
|
100 |
-
my_bkps = algo.predict(n_bkps)
|
101 |
-
|
102 |
-
# show results
|
103 |
-
fg,axxarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
|
104 |
-
st.pyplot(fig)
|
105 |
-
return my_bkps
|
106 |
-
|
107 |
-
def bot_up_seg(signal,bkps,n_bkps):
|
108 |
-
# change point detection
|
109 |
-
model = "l2" # "l1", "rbf", "linear", "normal", "ar",...
|
110 |
-
algo = rpt.Binseg(model=model).fit(signal)
|
111 |
-
my_bkps = algo.predict(n_bkps)
|
112 |
-
|
113 |
-
# show results
|
114 |
-
fig,axxar = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
|
115 |
-
st.pyplot(fig)
|
116 |
-
return my_bkps
|
117 |
-
|
118 |
-
def win_sli_seg(signal,bkps,n_bkps):
|
119 |
-
# change point detection
|
120 |
-
model = "l2" # "l1", "rbf", "linear", "normal", "ar"
|
121 |
-
algo = rpt.Window(width=40, model=model).fit(signal)
|
122 |
-
my_bkps = algo.predict(n_bkps)
|
123 |
-
|
124 |
-
# show results
|
125 |
-
fig,axxar= rpt.show.display(signal, bkps, my_bkps, figsize=(10, 6))
|
126 |
-
st.pyplot(fig)
|
127 |
-
return my_bkps
|
128 |
-
|
129 |
-
|
130 |
-
searchmethod_list = ['Dynamic Programming','Pelt','Binary Segmentation','Bottom-up Segmentation','Window sliding segmentation']
|
131 |
-
detection_model = st.selectbox(label = "Choose a Detection Method",options = searchmethod_list)
|
132 |
-
|
133 |
-
if detection_model== 'Dynamic Programming':
|
134 |
-
bkps1 = dynp_method(signal,bkps,n_bkps)
|
135 |
-
|
136 |
-
elif detection_model=='Pelt':
|
137 |
-
bkps1 = pelt_method(signal,bkps,n_bkps)
|
138 |
-
elif detection_model=='Binary Segmentation':
|
139 |
-
bkps1 = bin_seg_method(signal,bkps,n_bkps)
|
140 |
-
elif detection_model=='Bottom-up Segmentation':
|
141 |
-
bkps1 = bot_up_seg(signal,bkps,n_bkps)
|
142 |
-
else:
|
143 |
-
bkps1 = win_sli_seg(signal,bkps,n_bkps)
|
144 |
-
|
145 |
-
p, r = precision_recall(bkps, bkps1)
|
146 |
-
st.header('Precision and Recall')
|
147 |
-
st.write(p, r)
|
148 |
-
|
149 |
-
st.header('Hausdorff metric')
|
150 |
-
st.write(hausdorff(bkps, bkps1))
|
151 |
-
|
152 |
-
st.header('Rand index')
|
153 |
-
|
154 |
-
|
155 |
-
st.write(randindex(bkps, bkps1))
|
|
|
9 |
st.title("Change Point Detection")
|
10 |
# Generating Signal
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|