|
import tensorflow as tf |
|
from tensorflow import keras |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn import preprocessing |
|
import seaborn as sns |
|
from sklearn.preprocessing import LabelEncoder |
|
import pickle |
|
import streamlit as st |
|
|
|
st.title('Repair Time Prediction') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def user_report(): |
|
Aircraft_Type = st.sidebar.selectbox('Aircraft Type',("AH-64","UH-60","UH-63","UH-62","UH-61","AH-65")) |
|
if Aircraft_Type=="AH-64": |
|
Aircraft_Type=0 |
|
elif Aircraft_Type=="UH-60": |
|
Aircraft_Type=2 |
|
elif Aircraft_Type=="UH-63": |
|
Aircraft_Type=5 |
|
elif Aircraft_Type=="UH-62": |
|
Aircraft_Type=4 |
|
elif Aircraft_Type=="UH-61": |
|
Aircraft_Type=3 |
|
else: |
|
Aircraft_Type=1 |
|
manufacturer = st.sidebar.selectbox("Manufacturer", |
|
("JKL Company", "GHI Company","AGS Company","ABC Company","XYZ Company" )) |
|
if manufacturer=='JKL Company': |
|
manufacturer=3 |
|
elif manufacturer=="GHI Company": |
|
manufacturer=2 |
|
elif manufacturer=="AGS Company": |
|
manufacturer=1 |
|
elif manufacturer=="ABC Company": |
|
manufacturer =0 |
|
else: |
|
manufacturer=4 |
|
component_age = st.sidebar.slider('Component Age (in hours)', 500,2000, 600 ) |
|
Issue_category= st.sidebar.selectbox("Issue Category", |
|
("Display", "Unservicable","Bootup Problem","Engine Failure","Electrical Fault" )) |
|
if Issue_category=='Display': |
|
Issue_category=1 |
|
elif Issue_category=="Unservicable": |
|
Issue_category=4 |
|
elif Issue_category=="Bootup Problem": |
|
Issue_category=0 |
|
elif Issue_category=="Engine Failure": |
|
Issue_category=3 |
|
else: |
|
Issue_category=2 |
|
Snag_Severity = st.sidebar.selectbox("Snag Severity", |
|
("Low", "Medium","High" )) |
|
if Snag_Severity =='Low': |
|
Snag_Severity=1 |
|
elif Snag_Severity=="Medium": |
|
Snag_Severity =2 |
|
else: |
|
Snag_Severity=0 |
|
Customer= st.sidebar.selectbox("Customer", |
|
("IAF", "ARMY","NAVY" )) |
|
if Customer =='IAF': |
|
Customer=1 |
|
elif Customer=="ARMY": |
|
Customer =0 |
|
else: |
|
Customer=2 |
|
Technician_Skill_level= st.sidebar.selectbox("Technician Skill level", |
|
("Expert", "Intermediate","Novice" )) |
|
if Technician_Skill_level =='Expert': |
|
Technician_Skill_level=0 |
|
elif Technician_Skill_level=="Intermediate": |
|
Technician_Skill_level =1 |
|
else: |
|
Technician_Skill_level=2 |
|
prior_maintainence = st.sidebar.selectbox('Prior Maintainence',("Regular","Irregular")) |
|
if prior_maintainence =='Regular': |
|
prior_maintainence=1 |
|
else: |
|
prior_maintainence=0 |
|
Logistics_Time = st.sidebar.slider('Logistics Time (hr)', 2,21, 5 ) |
|
total_operating_hours = st.sidebar.slider('Total Operating Hours)', 50,2000, 500 ) |
|
operating_temperature = st.sidebar.slider('Operating Temperature', 10,25, 15 ) |
|
previous_number_of_repairs = st.sidebar.number_input('Enter the Previous Number of Repairs Undergone 0 to 3 )',min_value=0,max_value=3,step=1) |
|
Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',100,133,115) |
|
|
|
|
|
user_report_data = { |
|
'Aircraft Type':Aircraft_Type, |
|
'Manufacturer':manufacturer, |
|
'Component_Age':component_age, |
|
'Issue_category':Issue_category, |
|
'Snag Severity': Snag_Severity, |
|
'Customer':Customer, |
|
'Technician Skill level':Technician_Skill_level, |
|
'Prior Maintenance': prior_maintainence, |
|
'Logistics Time (hr)':Logistics_Time, |
|
'total_operating_hours':total_operating_hours, |
|
'operating_temperature':operating_temperature, |
|
'previous_number_of_repairs':previous_number_of_repairs, |
|
'Power_Input_Voltage':Power_Input_Voltage |
|
|
|
} |
|
report_data = pd.DataFrame(user_report_data, index=[0]) |
|
return report_data |
|
|
|
|
|
user_data = user_report() |
|
st.header("Component Details") |
|
st.write(user_data) |
|
|
|
def preprocess_dataset(X): |
|
x = X.values |
|
min_max_scaler = preprocessing.MinMaxScaler() |
|
x_scaled = min_max_scaler.fit_transform(x) |
|
X_df = pd.DataFrame(x_scaled) |
|
return X_df |
|
|
|
def label_encoding(data): |
|
le = LabelEncoder() |
|
cat = data.select_dtypes(include='O').keys() |
|
categ = list(cat) |
|
data[categ] = data[categ].apply(le.fit_transform) |
|
|
|
|
|
|
|
return data |
|
|
|
def prediction(df): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x_model = pickle.load(open('repair_time_model.pkl','rb')) |
|
pred = x_model.predict(df) |
|
|
|
|
|
|
|
|
|
return pred |
|
|
|
y_pred = prediction(user_data) |
|
|
|
if st.button("Predict"): |
|
st.subheader(f"Time required to Repair the Component is {y_pred[0]} hours") |