Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow import keras
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import pandas as pd
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn import preprocessing
|
8 |
+
import seaborn as sns
|
9 |
+
from sklearn.preprocessing import LabelEncoder
|
10 |
+
import pickle
|
11 |
+
import streamlit as st
|
12 |
+
|
13 |
+
st.title('Repair Time Prediction')
|
14 |
+
#DLoading the ataset
|
15 |
+
#df = pd.read_csv('repair_time_sample_50k_modified2.csv')
|
16 |
+
|
17 |
+
new_data = df
|
18 |
+
#df.drop(['SRU serial number','Date of Manufacture', 'Snag Description'], axis = 1, inplace=True)
|
19 |
+
|
20 |
+
|
21 |
+
# DATA from user
|
22 |
+
def user_report():
|
23 |
+
Aircraft_Type = st.sidebar.selectbox('Aircraft Type',("AH-64","UH-60","UH-63","UH-62","UH-61","AH-65"))
|
24 |
+
if Aircraft_Type=="AH-64":
|
25 |
+
Aircraft_Type=0
|
26 |
+
elif Aircraft_Type=="UH-60":
|
27 |
+
Aircraft_Type=2
|
28 |
+
elif Aircraft_Type=="UH-63":
|
29 |
+
Aircraft_Type=5
|
30 |
+
elif Aircraft_Type=="UH-62":
|
31 |
+
Aircraft_Type=4
|
32 |
+
elif Aircraft_Type=="UH-61":
|
33 |
+
Aircraft_Type=3
|
34 |
+
else:
|
35 |
+
Aircraft_Type=1
|
36 |
+
manufacturer = st.sidebar.selectbox("Manufacturer",
|
37 |
+
("JKL Company", "GHI Company","AGS Company","ABC Company","ABC Company","XYZ Company" ))
|
38 |
+
if manufacturer=='JKL Company':
|
39 |
+
manufacturer=3
|
40 |
+
elif manufacturer=="GHI Company":
|
41 |
+
manufacturer=2
|
42 |
+
elif manufacturer=="AGS Company":
|
43 |
+
manufacturer=1
|
44 |
+
elif manufacturer=="ABC Company":
|
45 |
+
manufacturer =0
|
46 |
+
else:
|
47 |
+
manufacturer=4
|
48 |
+
component_age = st.sidebar.slider('Component Age (in hours)', 500,2000, 600 )
|
49 |
+
Issue_category= st.sidebar.selectbox("Issue Category",
|
50 |
+
("Display", "Unservicable","Bootup Problem","Engine Failure","Electrical Fault" ))
|
51 |
+
if Issue_category=='Display':
|
52 |
+
Issue_category=1
|
53 |
+
elif Issue_category=="Unservicable":
|
54 |
+
Issue_category=4
|
55 |
+
elif Issue_category=="Bootup Problem":
|
56 |
+
Issue_category=0
|
57 |
+
elif Issue_category=="Engine Failure":
|
58 |
+
Issue_category=3
|
59 |
+
else:
|
60 |
+
Issue_category=2
|
61 |
+
Snag Severity = st.sidebar.selectbox("Snag Severity",
|
62 |
+
("Low", "Medium","High" ))
|
63 |
+
if Snag Severity =='Low':
|
64 |
+
Snag Severity=1
|
65 |
+
elif Snag Severity=="Medium":
|
66 |
+
Snag Severity =2
|
67 |
+
else:
|
68 |
+
Snag Severity=0
|
69 |
+
Customer= st.sidebar.selectbox("Customer",
|
70 |
+
("IAF", "ARMY","NAVY" ))
|
71 |
+
if Customer =='IAF':
|
72 |
+
Customer=1
|
73 |
+
elif Customer=="ARMY":
|
74 |
+
Customer =0
|
75 |
+
else:
|
76 |
+
Customer=2
|
77 |
+
Technician_Skill_level= st.sidebar.selectbox("Technician Skill level",
|
78 |
+
("Expert", "Intermediate","Novice" ))
|
79 |
+
if Technician_Skill_level =='Expert':
|
80 |
+
Technician_Skill_level=0
|
81 |
+
elif Technician_Skill_level=="Intermediate":
|
82 |
+
Technician_Skill_level =1
|
83 |
+
else:
|
84 |
+
Technician_Skill_level=2
|
85 |
+
prior_maintainence = st.sidebar.selectbox('Prior Maintainence',("Regular","Irregular"))
|
86 |
+
if prior_maintainence =='Regular':
|
87 |
+
prior_maintainence=1
|
88 |
+
else:
|
89 |
+
prior_maintainence=0
|
90 |
+
Logistics_Time = st.sidebar.slider('Logistics Time (hr)', 2,21, 5 )
|
91 |
+
total_operating_hours = st.sidebar.slider('Total Operating Hours)', 50,2000, 500 )
|
92 |
+
operating_temperature = st.sidebar.slider('Operating Temperature', 10,25, 15 )
|
93 |
+
previous_number_of_repairs = st.sidebar.number_input('Enter the Previous Number of Repairs Undergone 0 to 3 )',min_value=0,max_value=3,step=1)
|
94 |
+
Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',100,133,115)
|
95 |
+
|
96 |
+
|
97 |
+
user_report_data = {
|
98 |
+
'Aircraft Type':Aircraft_Type,
|
99 |
+
'Manufacturer':manufacturer,
|
100 |
+
'Component_Age':component_age,
|
101 |
+
'Issue_category':Issue_category,
|
102 |
+
'Snag Severity': Snag Severity,
|
103 |
+
'Customer':Customer,
|
104 |
+
'Technician Skill level':Technician_Skill_level,
|
105 |
+
'Prior Maintenance': prior_maintainence,
|
106 |
+
'Logistics Time (hr)':Logistics_Time,
|
107 |
+
'total_operating_hours':total_operating_hour,
|
108 |
+
'operating_temperature':operating_temperature,
|
109 |
+
'previous_number_of_repairs':previous_number_of_repairs, ,
|
110 |
+
'Power_Input_Voltage':Power_Input_Voltage
|
111 |
+
|
112 |
+
}
|
113 |
+
report_data = pd.DataFrame(user_report_data, index=[0])
|
114 |
+
return report_data
|
115 |
+
|
116 |
+
#Customer Data
|
117 |
+
user_data = user_report()
|
118 |
+
st.header("Component Details")
|
119 |
+
st.write(user_data)
|
120 |
+
|
121 |
+
def preprocess_dataset(X):
|
122 |
+
x = X.values #returns a numpy array
|
123 |
+
min_max_scaler = preprocessing.MinMaxScaler()
|
124 |
+
x_scaled = min_max_scaler.fit_transform(x)
|
125 |
+
X_df = pd.DataFrame(x_scaled)
|
126 |
+
return X_df
|
127 |
+
|
128 |
+
def label_encoding(data):
|
129 |
+
le = LabelEncoder()
|
130 |
+
cat = data.select_dtypes(include='O').keys()
|
131 |
+
categ = list(cat)
|
132 |
+
data[categ] = data[categ].apply(le.fit_transform)
|
133 |
+
# X = data.loc[:,data.columns!= "Time required for repair (in hours)"]
|
134 |
+
# y = data['Time required for repair (in hours)']
|
135 |
+
# return X,y
|
136 |
+
return data
|
137 |
+
|
138 |
+
def prediction(df):
|
139 |
+
#X = df.loc[:,df.columns!= "Time required for repair (in hours)"]
|
140 |
+
#y = df['Time required for repair (in hours)']
|
141 |
+
#X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
|
142 |
+
#print(X_train.shape)
|
143 |
+
#print(X_test.shape)
|
144 |
+
X_test_encoded = label_encoding(df)
|
145 |
+
X_test_df = preprocess_dataset(X_test_encoded)
|
146 |
+
x_model = pickle.load(open('repair_time_model.pkl','rb'))
|
147 |
+
pred = x_model.predict(X_test_df)
|
148 |
+
#X_test['Actual_time_to_repair'] = y_test
|
149 |
+
#X_test['Predicted_time_to_repair'] = pred
|
150 |
+
#X_test.to_csv(r'/content/drive/MyDrive/Colab Notebooks/HAL/repair_time_prediction_results.csv')
|
151 |
+
#print(X_test.head())
|
152 |
+
return pred
|
153 |
+
|
154 |
+
y_pred = prediction(user_data)
|
155 |
+
|
156 |
+
if st.button("Predict"):
|
157 |
+
st.subheader(f"Time required to Repairs the Component is {y_pred} in hours")
|