import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import seaborn as sns import tensorflow as tf from transformers import BertTokenizer from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from keras.utils import to_categorical from sklearn import preprocessing import sklearn from sklearn.metrics import confusion_matrix from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax import gradio as gr # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # load model MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest" model = AutoModelForSequenceClassification.from_pretrained(MODEL) #model.save_pretrained(MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) config = AutoConfig.from_pretrained(MODEL) # create classifier function def classify_sentiments(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # Print labels and scores probs = {} ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(len(scores)): l = config.id2label[ranking[i]] s = scores[ranking[i]] probs[l] = np.round(float(s), 4) return probs #build the Gradio app #Instructuction = "Write an imaginary review about a product or service you might be interested in." title="Text Sentiment Analysis" description = """Write a Good or Bad review about an imaginary product or service,\ see how the machine learning model is able to predict your sentiments""" article = """ - Click submit button to test sentiment analysis prediction - Click clear button to refresh text """ gr.Interface(, 'text', 'label', title = title, description = description, #Instruction = Instructuction, article = article, allow_flagging = "never", live = False, examples=["This has to be the best Introductory course in machine learning", "I consider this training an absolute waste of time."] ).launch()