Spaces:
Runtime error
Runtime error
File size: 5,382 Bytes
b48f9b8 e4e04a8 b48f9b8 0ba77fc b48f9b8 3e5d933 b48f9b8 0ba77fc b48f9b8 0ba77fc b48f9b8 0ba77fc b48f9b8 c1dad72 0ba77fc c1dad72 0ba77fc c1dad72 b48f9b8 0ba77fc b48f9b8 0ba77fc b48f9b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os
import sys
from random import randint
import time
import uuid
import argparse
sys.path.append(os.path.abspath("../supv"))
from matumizi.util import *
from mcclf import *
import streamlit as st
def genVisitHistory(numUsers, convRate, label):
for i in range(numUsers):
userID = genID(12)
userSess = []
userSess.append(userID)
conv = randint(0, 100)
if (conv < convRate):
#converted
if (label):
if (randint(0,100) < 90):
userSess.append("T")
else:
userSess.append("F")
numSession = randint(2, 20)
for j in range(numSession):
sess = randint(0, 100)
if (sess <= 15):
elapsed = "H"
elif (sess > 15 and sess <= 40):
elapsed = "M"
else:
elapsed = "L"
sess = randint(0, 100)
if (sess <= 15):
duration = "L"
elif (sess > 15 and sess <= 40):
duration = "M"
else:
duration = "H"
sessSummary = elapsed + duration
userSess.append(sessSummary)
else:
#not converted
if (label):
if (randint(0,100) < 90):
userSess.append("F")
else:
userSess.append("T")
numSession = randint(2, 12)
for j in range(numSession):
sess = randint(0, 100)
if (sess <= 20):
elapsed = "L"
elif (sess > 20 and sess <= 45):
elapsed = "M"
else:
elapsed = "H"
sess = randint(0, 100)
if (sess <= 20):
duration = "H"
elif (sess > 20 and sess <= 45):
duration = "M"
else:
duration = "L"
sessSummary = elapsed + duration
userSess.append(sessSummary)
st.write(",".join(userSess))
def main():
st.set_page_config(page_title="Customer Conversion Prediction", page_icon=":guardsman:", layout="wide")
st.title("Markov Chain Classifier")
# # Add sidebar
# st.sidebar.title("Navigation")
# app_mode = st.sidebar.selectbox("Choose the app mode",
# ["Instructions", "Generate User Visit History", "Train Model", "Predict Conversion"])
# Add sidebar
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the App Mode",
["Instructions", "Generate User Visit History", "Predict Conversion"])
if app_mode == "Instructions":
st.write("Welcome to the Markov Chain Classifier app!")
# st.write("This app allows you to generate user visit history, train a Markov Chain Classifier model, and predict conversion.")
st.write("This app allows you to generate user visit history, train a Markov Chain Classifier model, and predict conversion.")
st.write("To get started, use the sidebar to navigate to the desired functionality.")
st.write("1. **Generate User Visit History**: Select the number of users and conversion rate, and click the 'Generate' button to generate user visit history.")
# st.write("2. **Train Model**: Upload an ML config file using the file uploader, and click the 'Train' button to train the Markov Chain Classifier model.")
st.write("3. **Predict Conversion**: Upload an ML config file using the file uploader, and click the 'Predict' button to make predictions with the trained model.")
elif app_mode == "Generate User Visit History":
st.subheader("Generate User Visit History")
num_users = st.number_input("Number of users", min_value=1, max_value=10000, value=100, step=1)
conv_rate = st.slider("Conversion rate", min_value=0, max_value=100, value=10, step=1)
add_label = st.checkbox("Add label", value=False)
if st.button("Generate"):
genVisitHistory(num_users, conv_rate, add_label)
# elif app_mode == "Train Model":
# st.subheader("Train Model")
# mlf_path = st.file_uploader("Upload ML config file")
# if st.button("Train"):
# if mlf_path is not None:
# model = MarkovChainClassifier(mlf_path)
# model.train()
elif app_mode == "Predict Conversion":
st.subheader("Predict Conversion")
# Upload ML config file using Streamlit's file_uploader function
mlf_file = st.file_uploader("Upload ML config file", type=["properties"])
# Check if ML config file was uploaded
if mlf_file is not None:
# Save the uploaded file to a local file
with open("mcclf_cc.properties", "wb") as f:
f.write(mlf_file.read())
# Create an instance of MarkovChainClassifier with the uploaded ML config file
model = MarkovChainClassifier("mcclf_cc.properties")
# Check if the "Predict" button was clicked
if st.button("Predict"):
# Call the predict method of the MarkovChainClassifier instance
model.predict()
if __name__ == "__main__":
main() |