Spaces:
Runtime error
Runtime error
File size: 4,494 Bytes
b48f9b8 e4e04a8 b48f9b8 3e5d933 b48f9b8 c1dad72 b48f9b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import os
import sys
from random import randint
import time
import uuid
import argparse
sys.path.append(os.path.abspath("../supv"))
from matumizi.util import *
from mcclf import *
import streamlit as st
def genVisitHistory(numUsers, convRate, label):
for i in range(numUsers):
userID = genID(12)
userSess = []
userSess.append(userID)
conv = randint(0, 100)
if (conv < convRate):
#converted
if (label):
if (randint(0,100) < 90):
userSess.append("T")
else:
userSess.append("F")
numSession = randint(2, 20)
for j in range(numSession):
sess = randint(0, 100)
if (sess <= 15):
elapsed = "H"
elif (sess > 15 and sess <= 40):
elapsed = "M"
else:
elapsed = "L"
sess = randint(0, 100)
if (sess <= 15):
duration = "L"
elif (sess > 15 and sess <= 40):
duration = "M"
else:
duration = "H"
sessSummary = elapsed + duration
userSess.append(sessSummary)
else:
#not converted
if (label):
if (randint(0,100) < 90):
userSess.append("F")
else:
userSess.append("T")
numSession = randint(2, 12)
for j in range(numSession):
sess = randint(0, 100)
if (sess <= 20):
elapsed = "L"
elif (sess > 20 and sess <= 45):
elapsed = "M"
else:
elapsed = "H"
sess = randint(0, 100)
if (sess <= 20):
duration = "H"
elif (sess > 20 and sess <= 45):
duration = "M"
else:
duration = "L"
sessSummary = elapsed + duration
userSess.append(sessSummary)
st.write(",".join(userSess))
def main():
st.set_page_config(page_title="Markov Chain Classifier", page_icon=":guardsman:", layout="wide")
st.title("Markov Chain Classifier")
# Add sidebar
st.sidebar.title("Navigation")
app_mode = st.sidebar.selectbox("Choose the app mode",
["Instructions", "Generate User Visit History", "Train Model", "Predict Conversion"])
if app_mode == "Instructions":
st.write("Welcome to the Markov Chain Classifier app!")
st.write("This app allows you to generate user visit history, train a Markov Chain Classifier model, and predict conversion.")
st.write("To get started, use the sidebar to navigate to the desired functionality.")
st.write("1. **Generate User Visit History**: Select the number of users and conversion rate, and click the 'Generate' button to generate user visit history.")
st.write("2. **Train Model**: Upload an ML config file using the file uploader, and click the 'Train' button to train the Markov Chain Classifier model.")
st.write("3. **Predict Conversion**: Upload an ML config file using the file uploader, and click the 'Predict' button to make predictions with the trained model.")
elif app_mode == "Generate User Visit History":
st.subheader("Generate User Visit History")
num_users = st.number_input("Number of users", min_value=1, max_value=10000, value=100, step=1)
conv_rate = st.slider("Conversion rate", min_value=0, max_value=100, value=10, step=1)
add_label = st.checkbox("Add label", value=False)
if st.button("Generate"):
genVisitHistory(num_users, conv_rate, add_label)
elif app_mode == "Train Model":
st.subheader("Train Model")
mlf_path = st.file_uploader("Upload ML config file")
if st.button("Train"):
if mlf_path is not None:
model = MarkovChainClassifier(mlf_path)
model.train()
elif app_mode == "Predict Conversion":
st.subheader("Predict Conversion")
mlf_path = st.file_uploader("Upload ML config file")
if st.button("Predict"):
if mlf_path is not None:
model = MarkovChainClassifier(mlf_path)
model.predict()
if __name__ == "__main__":
main() |