Spaces:
Runtime error
Runtime error
Commit
·
60f8dcb
1
Parent(s):
b7a4374
Update app.py
Browse files
app.py
CHANGED
@@ -1,135 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import os
|
2 |
# import sys
|
3 |
# from random import randint
|
4 |
# import time
|
5 |
# import uuid
|
6 |
# import argparse
|
|
|
7 |
# import streamlit as st
|
|
|
|
|
8 |
# sys.path.append(os.path.abspath("../supv"))
|
9 |
# from matumizi.util import *
|
10 |
# from mcclf import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
import time
|
16 |
-
import uuid
|
17 |
-
import argparse
|
18 |
-
import pandas as pd
|
19 |
-
import streamlit as st
|
20 |
|
21 |
-
# Add the directory containing the required modules to sys.path
|
22 |
-
sys.path.append(os.path.abspath("../supv"))
|
23 |
-
from matumizi.util import *
|
24 |
-
from mcclf import *
|
25 |
-
# from markov_chain_classifier import MarkovChainClassifier
|
26 |
-
|
27 |
-
def genVisitHistory(numUsers, convRate, label):
|
28 |
-
for i in range(numUsers):
|
29 |
-
userID = genID(12)
|
30 |
-
userSess = []
|
31 |
-
userSess.append(userID)
|
32 |
-
|
33 |
-
conv = randint(0, 100)
|
34 |
-
if (conv < convRate):
|
35 |
-
#converted
|
36 |
-
if (label):
|
37 |
-
if (randint(0,100) < 90):
|
38 |
-
userSess.append("T")
|
39 |
-
else:
|
40 |
-
userSess.append("F")
|
41 |
-
|
42 |
-
|
43 |
-
numSession = randint(2, 20)
|
44 |
-
for j in range(numSession):
|
45 |
-
sess = randint(0, 100)
|
46 |
-
if (sess <= 15):
|
47 |
-
elapsed = "H"
|
48 |
-
elif (sess > 15 and sess <= 40):
|
49 |
-
elapsed = "M"
|
50 |
-
else:
|
51 |
-
elapsed = "L"
|
52 |
-
|
53 |
-
sess = randint(0, 100)
|
54 |
-
if (sess <= 15):
|
55 |
-
duration = "L"
|
56 |
-
elif (sess > 15 and sess <= 40):
|
57 |
-
duration = "M"
|
58 |
-
else:
|
59 |
-
duration = "H"
|
60 |
-
|
61 |
-
sessSummary = elapsed + duration
|
62 |
-
userSess.append(sessSummary)
|
63 |
-
|
64 |
-
|
65 |
-
else:
|
66 |
-
#not converted
|
67 |
-
if (label):
|
68 |
-
if (randint(0,100) < 90):
|
69 |
-
userSess.append("F")
|
70 |
-
else:
|
71 |
-
userSess.append("T")
|
72 |
-
|
73 |
-
numSession = randint(2, 12)
|
74 |
-
for j in range(numSession):
|
75 |
-
sess = randint(0, 100)
|
76 |
-
if (sess <= 20):
|
77 |
-
elapsed = "L"
|
78 |
-
elif (sess > 20 and sess <= 45):
|
79 |
-
elapsed = "M"
|
80 |
-
else:
|
81 |
-
elapsed = "H"
|
82 |
-
|
83 |
-
sess = randint(0, 100)
|
84 |
-
if (sess <= 20):
|
85 |
-
duration = "H"
|
86 |
-
elif (sess > 20 and sess <= 45):
|
87 |
-
duration = "M"
|
88 |
-
else:
|
89 |
-
duration = "L"
|
90 |
-
|
91 |
-
sessSummary = elapsed + duration
|
92 |
-
userSess.append(sessSummary)
|
93 |
-
|
94 |
-
print(",".join(userSess))
|
95 |
-
|
96 |
# def trainModel(mlfpath):
|
97 |
# model = MarkovChainClassifier(mlfpath)
|
98 |
# model.train()
|
|
|
|
|
99 |
|
100 |
-
# def predictModel(mlfpath):
|
101 |
# model = MarkovChainClassifier(mlfpath)
|
102 |
-
# model.predict()
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
return model
|
108 |
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
res = model.predict(userID)
|
113 |
-
return res
|
114 |
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
|
|
|
|
122 |
|
123 |
-
#
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
#
|
127 |
-
|
128 |
-
st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.")
|
129 |
-
st.write("Prediction Result for User ID: ", userID)
|
130 |
-
st.write("Conversion: ", result)
|
131 |
|
|
|
|
|
132 |
|
|
|
|
|
133 |
|
134 |
|
135 |
|
@@ -137,60 +160,60 @@ st.write("Conversion: ", result)
|
|
137 |
|
138 |
|
139 |
|
140 |
-
# if op == "Predict":
|
141 |
-
# st.write("Enter the parameters to make a prediction:")
|
142 |
-
# userID = st.text_input("User ID")
|
143 |
-
# st.write("Click the button below to make a prediction")
|
144 |
-
# if st.button("Predict"):
|
145 |
-
# prediction = predictModel(mlfpath, userID)
|
146 |
-
# st.write("Prediction:", prediction)
|
147 |
|
148 |
-
# if __name__ == "__main__":
|
149 |
-
# st.title("Conversion Prediction App")
|
150 |
-
# st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.")
|
151 |
|
152 |
-
# op = st.sidebar.selectbox("Select Operation", ["Generate Visit History", "Train Model", "Predict"])
|
153 |
|
154 |
-
# if op == "Generate Visit History":
|
155 |
-
# st.write("Enter the parameters to generate the visit history:")
|
156 |
-
# numUsers = st.number_input("Number of users", min_value=1, max_value=1000, value=100, step=1)
|
157 |
-
# convRate = st.number_input("Conversion Rate (in percentage)", min_value=0, max_value=100, value=10, step=1)
|
158 |
-
# label = st.checkbox("Add Labels")
|
159 |
-
# st.write("Click the button below to generate the visit history")
|
160 |
-
# if st.button("Generate"):
|
161 |
-
# genVisitHistory(numUsers, convRate, label)
|
162 |
|
163 |
-
# elif op == "Train Model":
|
164 |
-
# st.write("Train the model using the following parameters:")
|
165 |
-
# mlfpath = st.text_input("MLF Path")
|
166 |
-
# if st.button("Train"):
|
167 |
-
# trainModel(mlfpath)
|
168 |
-
|
169 |
-
# elif op == "Predict":
|
170 |
-
# st.write("Predict using the trained model:")
|
171 |
-
# mlfpath = st.text_input("MLF Path")
|
172 |
-
# userID = st.text_input("User ID")
|
173 |
-
# if st.button("Predict"):
|
174 |
-
# result = predictModel(mlfpath, userID)
|
175 |
-
# st.write("Prediction Result: ", result)
|
176 |
-
|
177 |
-
# def main():
|
178 |
-
# st.title("Markov Chain Classifier")
|
179 |
-
|
180 |
-
# # Add input fields for command line arguments
|
181 |
-
# op = st.selectbox("Operation", ["gen", "train", "pred"])
|
182 |
-
# numUsers = st.slider("Number of Users", 1, 1000, 100)
|
183 |
-
# convRate = st.slider("Conversion Rate", 1, 100, 10)
|
184 |
-
# label = st.checkbox("Add Label")
|
185 |
-
# mlfpath = st.text_input("ML Config File Path", value="false")
|
186 |
-
|
187 |
-
# # Call functions based on selected operation
|
188 |
-
# if op == "gen":
|
189 |
-
# st.button("Generate Visit History", on_click=lambda: genVisitHistory(numUsers, convRate, label))
|
190 |
-
# elif op == "train":
|
191 |
-
# st.button("Train Model", on_click=lambda: trainModel(mlfpath))
|
192 |
-
# elif op == "pred":
|
193 |
-
# st.button("Predict Model", on_click=lambda: predictModel(mlfpath))
|
194 |
-
|
195 |
-
# if __name__ == "__main__":
|
196 |
-
# main()
|
|
|
1 |
+
# # import os
|
2 |
+
# # import sys
|
3 |
+
# # from random import randint
|
4 |
+
# # import time
|
5 |
+
# # import uuid
|
6 |
+
# # import argparse
|
7 |
+
# # import streamlit as st
|
8 |
+
# # sys.path.append(os.path.abspath("../supv"))
|
9 |
+
# # from matumizi.util import *
|
10 |
+
# # from mcclf import *
|
11 |
+
|
12 |
# import os
|
13 |
# import sys
|
14 |
# from random import randint
|
15 |
# import time
|
16 |
# import uuid
|
17 |
# import argparse
|
18 |
+
# import pandas as pd
|
19 |
# import streamlit as st
|
20 |
+
|
21 |
+
# # Add the directory containing the required modules to sys.path
|
22 |
# sys.path.append(os.path.abspath("../supv"))
|
23 |
# from matumizi.util import *
|
24 |
# from mcclf import *
|
25 |
+
# # from markov_chain_classifier import MarkovChainClassifier
|
26 |
+
|
27 |
+
# def genVisitHistory(numUsers, convRate, label):
|
28 |
+
# for i in range(numUsers):
|
29 |
+
# userID = genID(12)
|
30 |
+
# userSess = []
|
31 |
+
# userSess.append(userID)
|
32 |
+
|
33 |
+
# conv = randint(0, 100)
|
34 |
+
# if (conv < convRate):
|
35 |
+
# #converted
|
36 |
+
# if (label):
|
37 |
+
# if (randint(0,100) < 90):
|
38 |
+
# userSess.append("T")
|
39 |
+
# else:
|
40 |
+
# userSess.append("F")
|
41 |
+
|
42 |
+
|
43 |
+
# numSession = randint(2, 20)
|
44 |
+
# for j in range(numSession):
|
45 |
+
# sess = randint(0, 100)
|
46 |
+
# if (sess <= 15):
|
47 |
+
# elapsed = "H"
|
48 |
+
# elif (sess > 15 and sess <= 40):
|
49 |
+
# elapsed = "M"
|
50 |
+
# else:
|
51 |
+
# elapsed = "L"
|
52 |
+
|
53 |
+
# sess = randint(0, 100)
|
54 |
+
# if (sess <= 15):
|
55 |
+
# duration = "L"
|
56 |
+
# elif (sess > 15 and sess <= 40):
|
57 |
+
# duration = "M"
|
58 |
+
# else:
|
59 |
+
# duration = "H"
|
60 |
+
|
61 |
+
# sessSummary = elapsed + duration
|
62 |
+
# userSess.append(sessSummary)
|
63 |
+
|
64 |
+
|
65 |
+
# else:
|
66 |
+
# #not converted
|
67 |
+
# if (label):
|
68 |
+
# if (randint(0,100) < 90):
|
69 |
+
# userSess.append("F")
|
70 |
+
# else:
|
71 |
+
# userSess.append("T")
|
72 |
+
|
73 |
+
# numSession = randint(2, 12)
|
74 |
+
# for j in range(numSession):
|
75 |
+
# sess = randint(0, 100)
|
76 |
+
# if (sess <= 20):
|
77 |
+
# elapsed = "L"
|
78 |
+
# elif (sess > 20 and sess <= 45):
|
79 |
+
# elapsed = "M"
|
80 |
+
# else:
|
81 |
+
# elapsed = "H"
|
82 |
+
|
83 |
+
# sess = randint(0, 100)
|
84 |
+
# if (sess <= 20):
|
85 |
+
# duration = "H"
|
86 |
+
# elif (sess > 20 and sess <= 45):
|
87 |
+
# duration = "M"
|
88 |
+
# else:
|
89 |
+
# duration = "L"
|
90 |
+
|
91 |
+
# sessSummary = elapsed + duration
|
92 |
+
# userSess.append(sessSummary)
|
93 |
+
|
94 |
+
# print(",".join(userSess))
|
95 |
+
|
96 |
+
# # def trainModel(mlfpath):
|
97 |
+
# # model = MarkovChainClassifier(mlfpath)
|
98 |
+
# # model.train()
|
99 |
|
100 |
+
# # def predictModel(mlfpath):
|
101 |
+
# # model = MarkovChainClassifier(mlfpath)
|
102 |
+
# # model.predict()
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
# def trainModel(mlfpath):
|
105 |
# model = MarkovChainClassifier(mlfpath)
|
106 |
# model.train()
|
107 |
+
# return model
|
108 |
+
|
109 |
|
110 |
+
# def predictModel(mlfpath, userID):
|
111 |
# model = MarkovChainClassifier(mlfpath)
|
112 |
+
# res = model.predict(userID)
|
113 |
+
# return res
|
114 |
+
|
115 |
|
116 |
+
# # Define MLF path and user ID
|
117 |
+
# mlfpath = "mcclf_cc.properties"
|
118 |
+
# userID = "56C96HWLR9ZO"
|
|
|
119 |
|
120 |
+
# # Load the Markov chain classifier model
|
121 |
+
# model = MarkovChainClassifier('cc.mod')
|
122 |
|
123 |
+
# # Perform prediction
|
124 |
+
# result = model.predict(userID)
|
|
|
|
|
125 |
|
126 |
+
# # Display the prediction result
|
127 |
+
# st.title("Conversion Prediction App")
|
128 |
+
# st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.")
|
129 |
+
# st.write("Prediction Result for User ID: ", userID)
|
130 |
+
# st.write("Conversion: ", result)
|
131 |
|
132 |
+
import os
|
133 |
+
import streamlit as st
|
134 |
+
from mcclf import MarkovChainClassifier
|
135 |
|
136 |
+
def app():
|
137 |
+
st.title("Hugging Face Prediction App")
|
138 |
+
st.subheader("Enter User ID:")
|
139 |
+
userID = st.text_input("User ID")
|
140 |
|
141 |
+
# Add any other input fields or widgets for user interaction
|
142 |
+
# Add a "Predict" button
|
143 |
+
if st.button("Predict"):
|
144 |
+
# Load the Markov chain classifier model from the model folder
|
145 |
+
model_path = os.path.join("model", "cc.mod")
|
146 |
+
model = MarkovChainClassifier(model_path)
|
147 |
|
148 |
+
# Call the predict method on the loaded model
|
149 |
+
prediction = model.predict(userID)
|
|
|
|
|
|
|
150 |
|
151 |
+
# Display the prediction result
|
152 |
+
st.write("Prediction: ", prediction)
|
153 |
|
154 |
+
if __name__ == "__main__":
|
155 |
+
app()
|
156 |
|
157 |
|
158 |
|
|
|
160 |
|
161 |
|
162 |
|
163 |
+
# # if op == "Predict":
|
164 |
+
# # st.write("Enter the parameters to make a prediction:")
|
165 |
+
# # userID = st.text_input("User ID")
|
166 |
+
# # st.write("Click the button below to make a prediction")
|
167 |
+
# # if st.button("Predict"):
|
168 |
+
# # prediction = predictModel(mlfpath, userID)
|
169 |
+
# # st.write("Prediction:", prediction)
|
170 |
|
171 |
+
# # if __name__ == "__main__":
|
172 |
+
# # st.title("Conversion Prediction App")
|
173 |
+
# # st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.")
|
174 |
|
175 |
+
# # op = st.sidebar.selectbox("Select Operation", ["Generate Visit History", "Train Model", "Predict"])
|
176 |
|
177 |
+
# # if op == "Generate Visit History":
|
178 |
+
# # st.write("Enter the parameters to generate the visit history:")
|
179 |
+
# # numUsers = st.number_input("Number of users", min_value=1, max_value=1000, value=100, step=1)
|
180 |
+
# # convRate = st.number_input("Conversion Rate (in percentage)", min_value=0, max_value=100, value=10, step=1)
|
181 |
+
# # label = st.checkbox("Add Labels")
|
182 |
+
# # st.write("Click the button below to generate the visit history")
|
183 |
+
# # if st.button("Generate"):
|
184 |
+
# # genVisitHistory(numUsers, convRate, label)
|
185 |
|
186 |
+
# # elif op == "Train Model":
|
187 |
+
# # st.write("Train the model using the following parameters:")
|
188 |
+
# # mlfpath = st.text_input("MLF Path")
|
189 |
+
# # if st.button("Train"):
|
190 |
+
# # trainModel(mlfpath)
|
191 |
+
|
192 |
+
# # elif op == "Predict":
|
193 |
+
# # st.write("Predict using the trained model:")
|
194 |
+
# # mlfpath = st.text_input("MLF Path")
|
195 |
+
# # userID = st.text_input("User ID")
|
196 |
+
# # if st.button("Predict"):
|
197 |
+
# # result = predictModel(mlfpath, userID)
|
198 |
+
# # st.write("Prediction Result: ", result)
|
199 |
+
|
200 |
+
# # def main():
|
201 |
+
# # st.title("Markov Chain Classifier")
|
202 |
+
|
203 |
+
# # # Add input fields for command line arguments
|
204 |
+
# # op = st.selectbox("Operation", ["gen", "train", "pred"])
|
205 |
+
# # numUsers = st.slider("Number of Users", 1, 1000, 100)
|
206 |
+
# # convRate = st.slider("Conversion Rate", 1, 100, 10)
|
207 |
+
# # label = st.checkbox("Add Label")
|
208 |
+
# # mlfpath = st.text_input("ML Config File Path", value="false")
|
209 |
+
|
210 |
+
# # # Call functions based on selected operation
|
211 |
+
# # if op == "gen":
|
212 |
+
# # st.button("Generate Visit History", on_click=lambda: genVisitHistory(numUsers, convRate, label))
|
213 |
+
# # elif op == "train":
|
214 |
+
# # st.button("Train Model", on_click=lambda: trainModel(mlfpath))
|
215 |
+
# # elif op == "pred":
|
216 |
+
# # st.button("Predict Model", on_click=lambda: predictModel(mlfpath))
|
217 |
+
|
218 |
+
# # if __name__ == "__main__":
|
219 |
+
# # main()
|