Priyanka-Kumavat-At-TE commited on
Commit
cb5b42f
·
1 Parent(s): 0e55060

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -7
app.py CHANGED
@@ -22,6 +22,7 @@ import streamlit as st
22
  sys.path.append(os.path.abspath("../supv"))
23
  from matumizi.util import *
24
  from mcclf import *
 
25
 
26
  def genVisitHistory(numUsers, convRate, label):
27
  for i in range(numUsers):
@@ -111,13 +112,38 @@ def predictModel(mlfpath, userID):
111
  res = model.predict(userID)
112
  return res
113
 
114
- if op == "Predict":
115
- st.write("Enter the parameters to make a prediction:")
116
- userID = st.text_input("User ID")
117
- st.write("Click the button below to make a prediction")
118
- if st.button("Predict"):
119
- prediction = predictModel(mlfpath, userID)
120
- st.write("Prediction:", prediction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
  # if __name__ == "__main__":
123
  # st.title("Conversion Prediction App")
 
22
  sys.path.append(os.path.abspath("../supv"))
23
  from matumizi.util import *
24
  from mcclf import *
25
+ from markov_chain_classifier import MarkovChainClassifier
26
 
27
  def genVisitHistory(numUsers, convRate, label):
28
  for i in range(numUsers):
 
112
  res = model.predict(userID)
113
  return res
114
 
115
+
116
+ # Define MLF path and user ID
117
+ mlfpath = "mcclf_cc.properties"
118
+ userID = "56C96HWLR9ZO"
119
+
120
+ # Load the Markov chain classifier model
121
+ model = MarkovChainClassifier('cc.mod')
122
+
123
+ # Perform prediction
124
+ result = model.predict(userID)
125
+
126
+ # Display the prediction result
127
+ st.title("Conversion Prediction App")
128
+ st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.")
129
+ st.write("Prediction Result for User ID: ", userID)
130
+ st.write("Conversion: ", result)
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+ # if op == "Predict":
141
+ # st.write("Enter the parameters to make a prediction:")
142
+ # userID = st.text_input("User ID")
143
+ # st.write("Click the button below to make a prediction")
144
+ # if st.button("Predict"):
145
+ # prediction = predictModel(mlfpath, userID)
146
+ # st.write("Prediction:", prediction)
147
 
148
  # if __name__ == "__main__":
149
  # st.title("Conversion Prediction App")