Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# import required libraries
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
|
9 |
+
from datetime import datetime
|
10 |
+
from datetime import timedelta
|
11 |
+
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, train_test_split
|
12 |
+
from sklearn.ensemble import RandomForestRegressor
|
13 |
+
from sklearn.metrics import r2_score
|
14 |
+
from sklearn.preprocessing import LabelEncoder
|
15 |
+
from sklearn.preprocessing import StandardScaler
|
16 |
import streamlit as st
|
17 |
+
import warnings
|
18 |
+
warnings.filterwarnings('ignore')
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
st.title("Prection of Maimum Number of Repais")
|
23 |
+
|
24 |
+
import pandas as pd
|
25 |
+
import numpy as np
|
26 |
+
import pickle
|
27 |
|
28 |
+
# load the saved model using pickle
|
29 |
+
with open('max_repair_model.pkl', 'rb') as file:
|
30 |
+
model = pickle.load(file)
|
31 |
+
|
32 |
+
# Load the saved manufacturer label encoder object using pickle
|
33 |
+
with open('manufacturer_le.pkl', 'rb') as file1:
|
34 |
+
le = pickle.load(file1)
|
35 |
+
|
36 |
|
37 |
+
# define the prediction function
|
38 |
+
def predict_max_number_of_repairs(manufacturer, component_age, total_operating_hours, operating_temperature, humidity, vibration_level, pressure, power_input_voltage, previous_number_of_repairs, load_factor, engine_speed, oil_temperature):
|
39 |
+
|
40 |
+
# encode the manufacturer using the loaded LabelEncoder object
|
41 |
+
manufacturer_encoded = le.transform([manufacturer])[0]
|
42 |
+
|
43 |
+
# create a DataFrame with the input variables
|
44 |
+
input_data = pd.DataFrame({'Manufacturer': [manufacturer_encoded],
|
45 |
+
'Component_Age': [component_age],
|
46 |
+
'Total_Operating_Hours': [total_operating_hours],
|
47 |
+
'Operating_Temperature': [operating_temperature],
|
48 |
+
'Humidity': [humidity],
|
49 |
+
'Vibration_Level': [vibration_level],
|
50 |
+
'Pressure': [pressure],
|
51 |
+
'Power_Input_Voltage': [power_input_voltage],
|
52 |
+
'Previous_number_of_repairs': [previous_number_of_repairs],
|
53 |
+
'Load_Factor': [load_factor],
|
54 |
+
'Engine_Speed': [engine_speed],
|
55 |
+
'Oil_Temperature': [oil_temperature]})
|
56 |
+
|
57 |
+
# make the prediction using the loaded model and input data
|
58 |
+
predicted_max_number_of_repairs = model.predict(input_data)
|
59 |
+
|
60 |
+
# return the predicted max number of repairs as output
|
61 |
+
return np.round(predicted_max_number_of_repairs[0])
|
62 |
+
# Function calling
|
63 |
+
print(predict_max_number_of_repairs('ABC Company',100.00,1135,70.0,65,3.43,29.90,120,4,0.59,7398,170))
|