Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
import numpy as np # linear algebra
|
4 |
+
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
5 |
+
from sklearn.metrics import roc_curve,auc,classification_report,confusion_matrix
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import matplotlib.image as mpimg
|
8 |
+
from PIL import Image
|
9 |
+
import cv2
|
10 |
+
import keras
|
11 |
+
from keras.utils import np_utils
|
12 |
+
from tensorflow.keras.models import Sequential
|
13 |
+
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout
|
14 |
+
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint,ReduceLROnPlateau
|
15 |
+
from tensorflow.keras.models import Model
|
16 |
+
from tensorflow.keras.optimizers import Adam,SGD,RMSprop,Adamax
|
17 |
+
from tensorflow.keras.models import Model, Sequential
|
18 |
+
from tensorflow.keras.callbacks import ReduceLROnPlateau
|
19 |
+
from sklearn.model_selection import StratifiedKFold
|
20 |
+
from tensorflow.keras.applications import MobileNetV2
|
21 |
+
from random import shuffle
|
22 |
+
from tqdm import tqdm
|
23 |
+
import scipy
|
24 |
+
import skimage
|
25 |
+
from skimage.transform import resize
|
26 |
+
import random
|
27 |
+
import os
|
28 |
+
from io import BytesIO
|
29 |
+
import h5py
|
30 |
+
model_file_path = "mobile_net_occ.h5"
|
31 |
+
|
32 |
+
plt. figure(figsize=(10,9))
|
33 |
+
def occ_predict(img_content):
|
34 |
+
im = []
|
35 |
+
image=cv2.imread(img_content)
|
36 |
+
print(type(image))
|
37 |
+
imgplot = plt.imshow(image)
|
38 |
+
plt.show()
|
39 |
+
img = Image.fromarray(image, 'RGB')
|
40 |
+
resize_image = img.resize((50, 50))
|
41 |
+
im.append(np.array(resize_image))
|
42 |
+
fv = np.array(im)
|
43 |
+
np_array_img = fv.astype('float32') / 255
|
44 |
+
model_gcs = h5py.File(model_file_path, 'r')
|
45 |
+
print(model_file_path)
|
46 |
+
myModel = load_model(model_gcs)
|
47 |
+
prediction = myModel.predict(np_array_img)
|
48 |
+
score = prediction[0][0].item()
|
49 |
+
thresh = 0.5
|
50 |
+
if score > thresh:
|
51 |
+
return "The Image is "+"Not Occluded "+"with a Score of "+str(round(score,2))
|
52 |
+
else:
|
53 |
+
return "The Image is "+"Occluded "+"with a Score of "+str(round(score,2))
|
54 |
+
|
55 |
+
#predicted_label, score = occ_predict("img1.jpg")
|
56 |
+
inputs = gr.inputs.Image(type = 'filepath')
|
57 |
+
#label = gr.outputs.Label(num_top_classes=2)
|
58 |
+
EXAMPLES = ["img1.png","img2.png","img3.png","img4.png","img7.png","img8.png","img9.png"]
|
59 |
+
|
60 |
+
|
61 |
+
demo_app = gr.Interface(
|
62 |
+
fn=occ_predict,
|
63 |
+
inputs=inputs,
|
64 |
+
outputs= "text",
|
65 |
+
title = "Prediction of Occulded or not Occulded Image",
|
66 |
+
examples = EXAMPLES,
|
67 |
+
cache_example = True,
|
68 |
+
live = True,
|
69 |
+
theme = 'huggingface'
|
70 |
+
)
|
71 |
+
demo_app.launch(debug=True, enable_queue = True)
|