saritha5 commited on
Commit
5d75077
·
1 Parent(s): d197604

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -0
app.py CHANGED
@@ -8,6 +8,11 @@ warnings.simplefilter("ignore", UserWarning)
8
  MODEL = pickle.load(open('IF_model_anomaly.pkl','rb'))
9
 
10
  st.title("Retail Anomaly")
 
 
 
 
 
11
 
12
  def prediction(sales,model):
13
  sales = np.float64(sales)
@@ -23,3 +28,4 @@ def fun():
23
  if st.button("Predict"):
24
  fun()
25
 
 
 
8
  MODEL = pickle.load(open('IF_model_anomaly.pkl','rb'))
9
 
10
  st.title("Retail Anomaly")
11
+ st.write(""" Anomaly detection (or outlier detection) is the identification of rare items, events or observations which raise suspicions by
12
+ differing significantly from the majority of the data. Typically, anomalous data can be connected to some kind of problem or rare event such
13
+ as e.g. bank fraud, medical problems, structural defects, malfunctioning equipment etc. This connection makes it very interesting to be able
14
+ to pick out which data points can be considered anomalies, as identifying these events are typically very interesting from a business perspective.
15
+ """)
16
 
17
  def prediction(sales,model):
18
  sales = np.float64(sales)
 
28
  if st.button("Predict"):
29
  fun()
30
 
31
+ st.write("For detail description visit https://huggingface.co/spaces/ThirdEyeData/Retail-Anomaly/blob/main/README.md")