Spaces:
Runtime error
Runtime error
# Importing required libraries | |
import pandas as pd | |
import numpy as np | |
import streamlit as st | |
from sentence_transformers import SentenceTransformer, util | |
st.title("Semantic-Search-Transformer") | |
# Importing the Data | |
df = pd.read_csv('medium_articles.csv') | |
# Downloading the sentence transformer model | |
embedder = SentenceTransformer('all-MiniLM-L6-v2') | |
#Predictions | |
# User-Test function (prediction_script.py) | |
# load saved model | |
all_embeddings = np.load('mediumArticle_embeddings.npy') | |
# Function | |
def prediction(query,top_k,corpus_embeddings,df): | |
query_embedding = embedder.encode(query, convert_to_tensor=True) | |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k) | |
hits = hits[0] # Get the hits for the first query | |
print(f"\nTop {top_k} most similar sentences in corpus:") | |
for hit in hits: | |
hit_id = hit['corpus_id'] | |
article_data = df.iloc[hit_id] | |
title = article_data["title"] | |
st.write("-", title, "(Score: {:.4f})".format(hit['score'])) | |
query = st.text_input('Enter your query here','Artificial Intelligence') | |
# query = input("Enter the Input Query:- ") | |
# top_sent = int(input("Enter the number of similarity sentences you want: ")) | |
top_k = st.number_input('How many results do you want to see?',min_value= 2) | |
if st.button("Search"): | |
prediction(query,top_k,all_embeddings,df) | |