Priyanka-Kumavat-At-TE's picture
Update app.py
afe5c52
raw
history blame
1.38 kB
# Importing required libraries
import pandas as pd
import numpy as np
import streamlit as st
from sentence_transformers import SentenceTransformer, util
st.title("Semantic-Search-Using-Transformer")
# Importing the Data
df = pd.read_csv('medium_articles.csv')
# Downloading the sentence transformer model
embedder = SentenceTransformer('all-MiniLM-L6-v2')
#Predictions
# User-Test function (prediction_script.py)
# load saved model
all_embeddings = np.load('mediumArticle_embeddings.npy')
# Function
def prediction(query,top_k,corpus_embeddings,df):
query_embedding = embedder.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
print(f"\nTop {top_k} most similar sentences in corpus:")
for hit in hits:
hit_id = hit['corpus_id']
article_data = df.iloc[hit_id]
title = article_data["title"]
st.write("-", title, "(Score: {:.4f})".format(hit['score']))
query = st.text_input('Enter your query here','Artificial Intelligence')
# query = input("Enter the Input Query:- ")
# top_sent = int(input("Enter the number of similarity sentences you want: "))
top_k = st.number_input('How many results do you want to see?',min_value= 2)
if st.button("Click to Search"):
prediction(query,top_k,all_embeddings,df)