saritha5 commited on
Commit
29e2c06
1 Parent(s): 4ab499b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py CHANGED
@@ -5,3 +5,38 @@ import streamlit as st
5
  from sentence_transformers import SentenceTransformer, util
6
 
7
  st.title("Semantic-Search-Transformer")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  from sentence_transformers import SentenceTransformer, util
6
 
7
  st.title("Semantic-Search-Transformer")
8
+
9
+ # Importing the Data
10
+ df = pd.read_csv('medium_articles.csv')
11
+
12
+ # Downloading the sentence transformer model
13
+
14
+ embedder = SentenceTransformer('all-MiniLM-L6-v2')
15
+
16
+ #Predictions
17
+ # User-Test function (prediction_script.py)
18
+ # load saved model
19
+
20
+ all_embeddings = np.load('mediumArticle_embeddings.npy')
21
+
22
+ # Function
23
+
24
+ def prediction(query,top_k,corpus_embeddings,df):
25
+ query_embedding = embedder.encode(query, convert_to_tensor=True)
26
+ hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
27
+ hits = hits[0] # Get the hits for the first query
28
+
29
+ print(f"\nTop {top_k} most similar sentences in corpus:")
30
+ for hit in hits:
31
+ hit_id = hit['corpus_id']
32
+ article_data = df.iloc[hit_id]
33
+ title = article_data["title"]
34
+ st.write("-", title, "(Score: {:.4f})".format(hit['score']))
35
+
36
+ query = 'Artificial Intelligence and Blockchain'
37
+ # query = input("Enter the Input Query:- ")
38
+ # top_sent = int(input("Enter the number of similarity sentences you want: "))
39
+ top_k = 10
40
+ prediction(query,top_k,all_embeddings,df)
41
+
42
+