Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -33,117 +33,61 @@ import h5py
|
|
33 |
model_file_path = "mobile_net_occ.h5"
|
34 |
|
35 |
|
36 |
-
page_names = ["Blurred or Not Blurred Prediction","Occluded or Not Occluded Prediction"]
|
37 |
page = st.sidebar.radio('Navigation',page_names)
|
38 |
#st.write("Welcome to the Project")
|
39 |
|
40 |
-
|
41 |
-
|
42 |
Image Blurriness Occluded
|
43 |
""")
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
##Blurriness Features
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
gray_cvimage = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2GRAY)
|
70 |
#print(gray_cvimage)
|
71 |
-
|
72 |
#print(variance_laplacian)
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
#image_path = "images_11.jpeg"
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
else:
|
87 |
-
image= Image.open(file)
|
88 |
-
st.image(image,use_column_width = True)
|
89 |
-
predicted_label,variance_score = blurr_predict(file)
|
90 |
-
#st.header(predicted_label)
|
91 |
-
#st.header(str(round(variance_score,2)))
|
92 |
-
string = "The image is," + str(predicted_label) + " with the score value of " + str(round(variance_score,2))
|
93 |
-
st.subheader(string)
|
94 |
else:
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
im = []
|
99 |
-
image = cv2.imread(img_content)
|
100 |
-
imgplot = plt.show(image)
|
101 |
-
|
102 |
-
#st.write(img_content)
|
103 |
-
#st.write(type(img_content))
|
104 |
-
|
105 |
-
img = Image.fromarray(image, 'RGB')
|
106 |
-
#st.write(type(image1))
|
107 |
-
resize_image = img.resize((50, 50))
|
108 |
-
im.append(np.array(resize_image))
|
109 |
-
fv = np.array(im)
|
110 |
-
np_array_img = fv.astype('float32') / 255
|
111 |
-
model_gcs = h5py.File(model_file_path, 'r')
|
112 |
-
myModel = load_model(model_gcs)
|
113 |
-
prediction = myModel.predict(np_array_img)
|
114 |
-
score = prediction[0][0].item()
|
115 |
-
|
116 |
-
thresh = 0.5
|
117 |
-
if score > thresh:
|
118 |
-
return "Not Occluded",score
|
119 |
-
else:
|
120 |
-
return "Occluded",score
|
121 |
-
|
122 |
-
f = st.file_uploader('Upload an Image',type=(["jpeg","jpg","png"]))
|
123 |
-
st.write(f)
|
124 |
-
#st.subheader("Prediction of Occluded or Not Occluded")
|
125 |
-
#images1 = ["img1.png","img2.png","img3.png","img4.png"]
|
126 |
-
# with st.sidebar:
|
127 |
-
#st.write("choose an image")
|
128 |
-
#st.image(images1)
|
129 |
-
|
130 |
-
if f is None:
|
131 |
-
st.write("Please upload an image file")
|
132 |
-
else:
|
133 |
-
#stringio = StringIO(f.getvalue())
|
134 |
-
#f = stringio.read()
|
135 |
-
image1= Image.open(f)
|
136 |
-
#st.write(type(f.name))
|
137 |
-
st.image(image1,use_column_width = True)
|
138 |
-
#image_path = Path(f.name)
|
139 |
-
#st.write(image_path)
|
140 |
-
|
141 |
-
|
142 |
-
predicted_label,variance_score = occ_predict(f)
|
143 |
#st.header(predicted_label)
|
144 |
#st.header(str(round(variance_score,2)))
|
145 |
-
|
146 |
-
|
147 |
|
148 |
-
#predicted_label, score = occ_predict("/content/drive/MyDrive/Occulded.jpg")
|
149 |
-
#print("The image is", '\033[1m' + predicted_label1 + '\033[0m', "with the score value of" ,round(score,2))
|
|
|
33 |
model_file_path = "mobile_net_occ.h5"
|
34 |
|
35 |
|
36 |
+
#page_names = ["Blurred or Not Blurred Prediction","Occluded or Not Occluded Prediction"]
|
37 |
page = st.sidebar.radio('Navigation',page_names)
|
38 |
#st.write("Welcome to the Project")
|
39 |
|
40 |
+
|
41 |
+
st.title("""
|
42 |
Image Blurriness Occluded
|
43 |
""")
|
44 |
+
st.subheader("Prediction of Blur or NotBlur Image")
|
45 |
+
images = ["blur1.png","blurimg2.png","blurimg3.png","images_11.jpeg"]
|
46 |
+
with st.sidebar:
|
47 |
+
st.write("choose an image")
|
48 |
+
st.image(images)
|
49 |
+
#model_file_path = "mobile_net_occ.h5"
|
50 |
|
51 |
##Blurriness Features
|
52 |
|
53 |
+
plt. figure(figsize=(10,9))
|
54 |
+
def variance_of_laplacian(image):
|
55 |
+
return cv2.Laplacian(image, cv2.CV_64F).var()
|
56 |
|
57 |
+
def threshold(value, thresh):
|
58 |
+
if value > thresh:
|
59 |
+
return "Not Blur"
|
60 |
+
else:
|
61 |
+
return "Blur"
|
62 |
+
def blurr_predict(img_iter):
|
63 |
+
def make_prediction(img_content):
|
64 |
+
pil_image = Image.open(img_content)
|
65 |
+
imgplot = plt.imshow(pil_image)
|
66 |
+
#st.image(pil_image)
|
67 |
+
plt.show()
|
68 |
+
gray_cvimage = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2GRAY)
|
|
|
69 |
#print(gray_cvimage)
|
70 |
+
variance_laplacian = variance_of_laplacian(gray_cvimage)
|
71 |
#print(variance_laplacian)
|
72 |
+
return variance_laplacian
|
73 |
|
74 |
+
variance_score = make_prediction(img_iter)
|
75 |
+
thresh = 2000
|
76 |
+
variance_score = variance_score/thresh
|
77 |
+
predicted_label = threshold(variance_score, 1)
|
78 |
+
return predicted_label,variance_score
|
79 |
|
80 |
#image_path = "images_11.jpeg"
|
81 |
+
file = st.file_uploader('Upload an Image',type=(["jpeg","jpg","png"]))
|
82 |
|
83 |
+
if file is None:
|
84 |
+
st.write("Please upload an image file")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
else:
|
86 |
+
image= Image.open(file)
|
87 |
+
st.image(image,use_column_width = True)
|
88 |
+
predicted_label,variance_score = blurr_predict(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
#st.header(predicted_label)
|
90 |
#st.header(str(round(variance_score,2)))
|
91 |
+
string = "The image is," + str(predicted_label) + " with the score value of " + str(round(variance_score,2))
|
92 |
+
st.subheader(string)
|
93 |
|
|
|
|