Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -80,4 +80,47 @@ else:
|
|
80 |
#st.header(predicted_label)
|
81 |
#st.header(str(round(variance_score,2)))
|
82 |
string = "The image is," + str(predicted_label) + " with the score value of " + str(round(variance_score,2))
|
83 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
#st.header(predicted_label)
|
81 |
#st.header(str(round(variance_score,2)))
|
82 |
string = "The image is," + str(predicted_label) + " with the score value of " + str(round(variance_score,2))
|
83 |
+
st.subheader(string)
|
84 |
+
|
85 |
+
st.header("Prediction of Occluded or not Occluded ")
|
86 |
+
plt. figure(figsize=(10,9))
|
87 |
+
def occ_predict(img_content):
|
88 |
+
im = []
|
89 |
+
image=cv2.imread(img_content)
|
90 |
+
imgplot = plt.imshow(image)
|
91 |
+
plt.show()
|
92 |
+
img = Image.fromarray(image, 'RGB')
|
93 |
+
resize_image = img.resize((50, 50))
|
94 |
+
im.append(np.array(resize_image))
|
95 |
+
fv = np.array(im)
|
96 |
+
np_array_img = fv.astype('float32') / 255
|
97 |
+
model_gcs = h5py.File(model_file_path, 'r')
|
98 |
+
myModel = load_model(model_gcs)
|
99 |
+
prediction = myModel.predict(np_array_img)
|
100 |
+
score = prediction[0][0].item()
|
101 |
+
thresh = 0.5
|
102 |
+
if score > thresh:
|
103 |
+
return "Not Occluded",score
|
104 |
+
else:
|
105 |
+
return "Occluded",score
|
106 |
+
|
107 |
+
f = st.file_uploader('Upload an Image',type=(["jpeg","jpg","png"]))
|
108 |
+
st.subheader("Prediction of Blur or NotBlur Image")
|
109 |
+
images1 = ["blur1.png","blurimg2.png","blurimg3.png","images_11.jpeg"]
|
110 |
+
with st.sidebar:
|
111 |
+
st.write("choose an image")
|
112 |
+
st.image(images)
|
113 |
+
|
114 |
+
if f is None:
|
115 |
+
st.write("Please upload an image file")
|
116 |
+
else:
|
117 |
+
image1= Image.open(f)
|
118 |
+
st.image(image1,use_column_width = True)
|
119 |
+
predicted_label1,variance_score1 = occ_predict(f)
|
120 |
+
#st.header(predicted_label)
|
121 |
+
#st.header(str(round(variance_score,2)))
|
122 |
+
string1 = "The image is," + str(predicted_label1) + " with the score value of " + str(round(variance_score1,2))
|
123 |
+
st.subheader(string1)
|
124 |
+
|
125 |
+
#predicted_label, score = occ_predict("/content/drive/MyDrive/Occulded.jpg")
|
126 |
+
#print("The image is", '\033[1m' + predicted_label1 + '\033[0m', "with the score value of" ,round(score,2))
|