import streamlit as st from tensorflow.keras.models import load_model import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.metrics import roc_curve,auc,classification_report,confusion_matrix import matplotlib.pyplot as plt import matplotlib.image as mpimg from PIL import Image import cv2 import keras from keras.utils import np_utils from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint,ReduceLROnPlateau from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam,SGD,RMSprop,Adamax from tensorflow.keras.models import Model, Sequential from tensorflow.keras.callbacks import ReduceLROnPlateau from sklearn.model_selection import StratifiedKFold from tensorflow.keras.applications import MobileNetV2 from random import shuffle from tqdm import tqdm import scipy import skimage from skimage.transform import resize import random import os import io from io import BytesIO,StringIO from pathlib import Path import h5py model_file_path = "mobile_net_occ.h5" #page_names = ["Blurred or Not Blurred Prediction","Occluded or Not Occluded Prediction"] #page = st.sidebar.radio('Navigation',page_names) #st.write("Welcome to the Project") st.title(""" Prediction of Image Blurriness """) #st.subheader("Prediction of Blur or NotBlur Image") st.write("""Blurring refers to the distortion of the definition of objects in an image, resulting in poor spatial resolution. Image blur is very common in natural photos, arising from different factors such as object motion, camera lens out-of-focus, and camera shake. To detect if an image is blurred or not, the variance of Laplacian is used. The Laplacian of an image identifies edges, and the variance of the same shows how smooth or hard the edge is. Smooth edges mean blurred images, hence sharp images tend to have large positive and negative Laplacian. We can use this model for filtering blurred images in all kinds of computer vision projects. """) images = ["blur1.png","bird1.jpeg","blurimg3.png","images_11.jpeg"] with st.sidebar: st.write("choose an image") st.image(images) #model_file_path = "mobile_net_occ.h5" ##Blurriness Features plt. figure(figsize=(10,9)) def variance_of_laplacian(image): return cv2.Laplacian(image, cv2.CV_64F).var() def threshold(value, thresh): if value > thresh: return "Not Blur" else: return "Blur" def blurr_predict(img_iter): def make_prediction(img_content): pil_image = Image.open(img_content) imgplot = plt.imshow(pil_image) #st.image(pil_image) plt.show() gray_cvimage = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2GRAY) #print(gray_cvimage) variance_laplacian = variance_of_laplacian(gray_cvimage) #print(variance_laplacian) return variance_laplacian variance_score = make_prediction(img_iter) thresh = 2000 variance_score = variance_score/thresh predicted_label = threshold(variance_score, 1) return predicted_label,variance_score #image_path = "images_11.jpeg" file = st.file_uploader('Upload an Image',type=(["jpeg","jpg","png"])) if file is None: st.write("Please upload an image file") else: image= Image.open(file) st.image(image,use_column_width = True) predicted_label,variance_score = blurr_predict(file) #st.header(predicted_label) #st.header(str(round(variance_score,2))) string = "The image is," + str(predicted_label) + " with the score value of " + str(round(variance_score,2)) st.subheader(string) st.write(""" For a detailed description please look through our Documentation """) url = 'https://huggingface.co/spaces/ThirdEyeData/image_bluriness_prediction/blob/main/README.md' st.markdown(f''' ''', unsafe_allow_html=True)