Spaces:
Sleeping
Sleeping
Upload image_sharpner.py
Browse files- image_sharpner.py +74 -0
image_sharpner.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Function to sharpen the image
|
9 |
+
def sharpen_image(image, strength):
|
10 |
+
kernel = np.array([[0, -strength, 0],
|
11 |
+
[-strength, 1 + 4 * strength, -strength],
|
12 |
+
[0, -strength, 0]])
|
13 |
+
sharpened = cv2.filter2D(image, -1, kernel)
|
14 |
+
return sharpened
|
15 |
+
|
16 |
+
# Function to smooth the image
|
17 |
+
def smooth_image(image, strength):
|
18 |
+
ksize = int(2 * round(strength) + 1) # Kernel size must be odd
|
19 |
+
smoothed = cv2.GaussianBlur(image, (ksize, ksize), 0)
|
20 |
+
return smoothed
|
21 |
+
|
22 |
+
# Streamlit App
|
23 |
+
st.title("Image Sharpening and Smoothing Tool")
|
24 |
+
|
25 |
+
# File uploader
|
26 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
27 |
+
|
28 |
+
if uploaded_file:
|
29 |
+
# Read the uploaded image
|
30 |
+
original_name = os.path.splitext(uploaded_file.name)[0] # Extract file name without extension
|
31 |
+
image = Image.open(uploaded_file)
|
32 |
+
image_array = np.array(image)
|
33 |
+
|
34 |
+
# Display the original image
|
35 |
+
st.subheader("Original Image")
|
36 |
+
st.image(image_array, channels="RGB")
|
37 |
+
|
38 |
+
# Choose between sharpening or smoothing
|
39 |
+
choice = st.radio("Choose an option:", ["Sharpen", "Smooth"])
|
40 |
+
|
41 |
+
# Slider for strength adjustment
|
42 |
+
if choice == "Sharpen":
|
43 |
+
strength = st.slider("Sharpening Strength", min_value=0.0, max_value=2.0, value=0.5, step=0.1)
|
44 |
+
processed_image = sharpen_image(image_array, strength)
|
45 |
+
suffix = "_sharpened"
|
46 |
+
else:
|
47 |
+
strength = st.slider("Smoothing Strength", min_value=1.0, max_value=10.0, value=3.0, step=1.0)
|
48 |
+
processed_image = smooth_image(image_array, strength)
|
49 |
+
suffix = "_smoothed"
|
50 |
+
|
51 |
+
# Display the processed image
|
52 |
+
st.subheader("Processed Image")
|
53 |
+
st.image(processed_image, channels="RGB")
|
54 |
+
|
55 |
+
# Convert the processed image to PIL format for downloading
|
56 |
+
processed_pil_image = Image.fromarray(processed_image)
|
57 |
+
if processed_pil_image.mode != "RGB":
|
58 |
+
processed_pil_image = processed_pil_image.convert("RGB")
|
59 |
+
|
60 |
+
# Prepare the image for download
|
61 |
+
buffer = io.BytesIO()
|
62 |
+
processed_pil_image.save(buffer, format="JPEG")
|
63 |
+
buffer.seek(0)
|
64 |
+
|
65 |
+
# Set the download filename
|
66 |
+
download_filename = f"{original_name}{suffix}.jpg"
|
67 |
+
|
68 |
+
# Download button
|
69 |
+
st.download_button(
|
70 |
+
label="Download Processed Image",
|
71 |
+
data=buffer,
|
72 |
+
file_name=download_filename,
|
73 |
+
mime="image/jpeg"
|
74 |
+
)
|