ThomasSimonini HF staff mamta commited on
Commit
581a790
Β·
0 Parent(s):

Duplicate from huggingface-projects/Deep-Reinforcement-Learning-Leaderboard

Browse files
Files changed (5) hide show
  1. .gitattributes +27 -0
  2. .gitignore +1 -0
  3. README.md +13 -0
  4. app.py +235 -0
  5. utils.py +14 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.onnx filter=lfs diff=lfs merge=lfs -text
13
+ *.ot filter=lfs diff=lfs merge=lfs -text
14
+ *.parquet filter=lfs diff=lfs merge=lfs -text
15
+ *.pb filter=lfs diff=lfs merge=lfs -text
16
+ *.pt filter=lfs diff=lfs merge=lfs -text
17
+ *.pth filter=lfs diff=lfs merge=lfs -text
18
+ *.rar filter=lfs diff=lfs merge=lfs -text
19
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
21
+ *.tflite filter=lfs diff=lfs merge=lfs -text
22
+ *.tgz filter=lfs diff=lfs merge=lfs -text
23
+ *.wasm filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__/*
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Deep Reinforcement Learning Leaderboard
3
+ emoji: πŸš€
4
+ colorFrom: green
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 3.11.0
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
app.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ import requests
4
+
5
+ from datasets import load_dataset
6
+ import gradio as gr
7
+ from huggingface_hub import HfApi, hf_hub_download
8
+ from huggingface_hub.repocard import metadata_load
9
+ import pandas as pd
10
+ from utils import *
11
+
12
+
13
+ block = gr.Blocks()
14
+
15
+ # Containing the data
16
+ rl_envs = [
17
+ {
18
+ "rl_env_beautiful": "LunarLander-v2 πŸš€",
19
+ "rl_env": "LunarLander-v2",
20
+ "video_link": "",
21
+ "global": None
22
+ },
23
+ {
24
+ "rl_env_beautiful": "CartPole-v1",
25
+ "rl_env": "CartPole-v1",
26
+ "video_link": "https://huggingface.co/sb3/ppo-CartPole-v1/resolve/main/replay.mp4",
27
+ "global": None
28
+ },
29
+ {
30
+ "rl_env_beautiful": "FrozenLake-v1-4x4-no_slippery ❄️",
31
+ "rl_env": "FrozenLake-v1-4x4-no_slippery",
32
+ "video_link": "",
33
+ "global": None
34
+ },
35
+ {
36
+ "rl_env_beautiful": "FrozenLake-v1-8x8-no_slippery ❄️",
37
+ "rl_env": "FrozenLake-v1-8x8-no_slippery",
38
+ "video_link": "",
39
+ "global": None
40
+ },
41
+ {
42
+ "rl_env_beautiful": "FrozenLake-v1-4x4 ❄️",
43
+ "rl_env": "FrozenLake-v1-4x4",
44
+ "video_link": "",
45
+ "global": None
46
+ },
47
+ {
48
+ "rl_env_beautiful": "FrozenLake-v1-8x8 ❄️",
49
+ "rl_env": "FrozenLake-v1-8x8",
50
+ "video_link": "",
51
+ "global": None
52
+ },
53
+ {
54
+ "rl_env_beautiful": "Taxi-v3 πŸš–",
55
+ "rl_env": "Taxi-v3",
56
+ "video_link": "",
57
+ "global": None
58
+ },
59
+ {
60
+ "rl_env_beautiful": "CarRacing-v0 🏎️",
61
+ "rl_env": "CarRacing-v0",
62
+ "video_link": "",
63
+ "global": None
64
+ },
65
+ {
66
+ "rl_env_beautiful": "MountainCar-v0 ⛰️",
67
+ "rl_env": "MountainCar-v0",
68
+ "video_link": "",
69
+ "global": None
70
+ },
71
+ {
72
+ "rl_env_beautiful": "SpaceInvadersNoFrameskip-v4 πŸ‘Ύ",
73
+ "rl_env": "SpaceInvadersNoFrameskip-v4",
74
+ "video_link": "",
75
+ "global": None
76
+ },
77
+ {
78
+ "rl_env_beautiful": "BipedalWalker-v3",
79
+ "rl_env": "BipedalWalker-v3",
80
+ "video_link": "",
81
+ "global": None
82
+ },
83
+ {
84
+ "rl_env_beautiful": "Walker2DBulletEnv-v0",
85
+ "rl_env": "Walker2DBulletEnv-v0",
86
+ "video_link": "",
87
+ "global": None
88
+ },
89
+ {
90
+ "rl_env_beautiful": "AntBulletEnv-v0",
91
+ "rl_env": "AntBulletEnv-v0",
92
+ "video_link": "",
93
+ "global": None
94
+ },
95
+ {
96
+ "rl_env_beautiful": "HalfCheetahBulletEnv-v0",
97
+ "rl_env": "HalfCheetahBulletEnv-v0",
98
+ "video_link": "",
99
+ "global": None
100
+ }
101
+ ]
102
+
103
+
104
+
105
+ def get_metadata(model_id):
106
+ try:
107
+ readme_path = hf_hub_download(model_id, filename="README.md")
108
+ return metadata_load(readme_path)
109
+ except requests.exceptions.HTTPError:
110
+ # 404 README.md not found
111
+ return None
112
+
113
+ def parse_metrics_accuracy(meta):
114
+ if "model-index" not in meta:
115
+ return None
116
+ result = meta["model-index"][0]["results"]
117
+ metrics = result[0]["metrics"]
118
+ accuracy = metrics[0]["value"]
119
+ return accuracy
120
+
121
+ # We keep the worst case episode
122
+ def parse_rewards(accuracy):
123
+ default_std = -1000
124
+ default_reward=-1000
125
+ if accuracy != None:
126
+ accuracy = str(accuracy)
127
+ parsed = accuracy.split(' +/- ')
128
+ if len(parsed)>1:
129
+ mean_reward = float(parsed[0])
130
+ std_reward = float(parsed[1])
131
+ elif len(parsed)==1: #only mean reward
132
+ mean_reward = float(parsed[0])
133
+ std_reward = float(0)
134
+
135
+ else:
136
+ mean_reward = float(default_std)
137
+ std_reward = float(default_reward)
138
+
139
+ else:
140
+ mean_reward = float(default_std)
141
+ std_reward = float(default_reward)
142
+ return mean_reward, std_reward
143
+
144
+
145
+ def get_model_ids(rl_env):
146
+ api = HfApi()
147
+ models = api.list_models(filter=rl_env)
148
+ model_ids = [x.modelId for x in models]
149
+ print(model_ids)
150
+ return model_ids
151
+
152
+ def get_model_dataframe(rl_env):
153
+ # Get model ids associated with rl_env
154
+ model_ids = get_model_ids(rl_env)
155
+ print(model_ids)
156
+ data = []
157
+ for model_id in model_ids:
158
+ """
159
+ readme_path = hf_hub_download(model_id, filename="README.md")
160
+ meta = metadata_load(readme_path)
161
+ """
162
+ meta = get_metadata(model_id)
163
+ #LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
164
+ if meta is None:
165
+ continue
166
+ user_id = model_id.split('/')[0]
167
+ row = {}
168
+ row["User"] = make_clickable_user(user_id)
169
+ row["Model"] = make_clickable_model(model_id)
170
+ accuracy = parse_metrics_accuracy(meta)
171
+ mean_reward, std_reward = parse_rewards(accuracy)
172
+ mean_reward = mean_reward if not pd.isna(mean_reward) else 0
173
+ std_reward = std_reward if not pd.isna(std_reward) else 0
174
+ row["Results"] = mean_reward - std_reward
175
+ row["Mean Reward"] = mean_reward
176
+ row["Std Reward"] = std_reward
177
+ data.append(row)
178
+ ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
179
+ print("RANKED", ranked_dataframe)
180
+ return ranked_dataframe
181
+
182
+
183
+ def rank_dataframe(dataframe):
184
+ print("DATAFRAME", dataframe)
185
+ dataframe = dataframe.sort_values(by=['Results'], ascending=False)
186
+ if not 'Ranking' in dataframe.columns:
187
+ dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
188
+ else:
189
+ dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
190
+ return dataframe
191
+
192
+
193
+ with block:
194
+ gr.Markdown(f"""
195
+ # πŸ† The Deep Reinforcement Learning Course Leaderboard πŸ†
196
+
197
+ This is the leaderboard of trained agents during the Deep Reinforcement Learning Course. A free course from beginner to expert.
198
+
199
+ Just choose which environment you trained your agent on and with Ctrl+F find your rank πŸ†
200
+
201
+ **If you don't find your model, go to the bottom of the page and click on the refresh button**
202
+
203
+ We use **lower bound result to sort the models: mean_reward - std_reward.**
204
+
205
+ You **can click on the model's name** to be redirected to its model card which includes documentation.
206
+
207
+ πŸ€– You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course πŸ€— </a>.
208
+
209
+ You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo πŸ‘€ </a>.
210
+
211
+ πŸ”§ There is an **environment missing?** Please open an issue.
212
+ """)
213
+
214
+ #for rl_env in RL_ENVS:
215
+ for i in range(0, len(rl_envs)):
216
+ rl_env = rl_envs[i]
217
+
218
+ with gr.TabItem(rl_env["rl_env_beautiful"]) as rl_tab:
219
+ with gr.Row():
220
+ markdown = """
221
+ # {name_leaderboard}
222
+
223
+ """.format(name_leaderboard = rl_env["rl_env_beautiful"], video_link = rl_env["video_link"])
224
+ gr.Markdown(markdown)
225
+ with gr.Row():
226
+ rl_env["global"] = gr.components.Dataframe(value= get_model_dataframe(rl_env["rl_env"]), headers=["Ranking πŸ†", "User πŸ€—", "Model id πŸ€–", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"])
227
+ with gr.Row():
228
+ data_run = gr.Button("Refresh")
229
+ print("rl_env", rl_env["rl_env"])
230
+ val = gr.Variable(value=[rl_env["rl_env"]])
231
+ data_run.click(get_model_dataframe, inputs=[val], outputs =rl_env["global"])
232
+
233
+
234
+ block.launch()
235
+
utils.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Based on Omar Sanseviero work
2
+ # Make model clickable link
3
+ def make_clickable_model(model_name):
4
+ # remove user from model name
5
+ model_name_show = ' '.join(model_name.split('/')[1:])
6
+
7
+ link = "https://huggingface.co/" + model_name
8
+ return f'<a target="_blank" href="{link}">{model_name_show}</a>'
9
+
10
+ # Make user clickable link
11
+ def make_clickable_user(user_id):
12
+ link = "https://huggingface.co/" + user_id
13
+ return f'<a target="_blank" href="{link}">{user_id}</a>'
14
+