Spaces:
Sleeping
Sleeping
File size: 38,590 Bytes
ce6b085 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 38,
"id": "14ff5741-629c-445a-a8a9-b3d9db1f3ddb",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss\n",
"from torch.utils.data import DataLoader\n",
"\n",
"import re\n",
"import numpy as np\n",
"import os\n",
"import pandas as pd\n",
"import copy\n",
"\n",
"import transformers, datasets\n",
"from transformers.modeling_outputs import TokenClassifierOutput\n",
"from transformers.models.t5.modeling_t5 import T5Config, T5PreTrainedModel, T5Stack\n",
"from transformers.utils.model_parallel_utils import assert_device_map, get_device_map\n",
"from transformers import T5EncoderModel, T5Tokenizer\n",
"from transformers.models.esm.modeling_esm import EsmPreTrainedModel, EsmModel\n",
"from transformers import AutoTokenizer\n",
"from transformers import TrainingArguments, Trainer, set_seed\n",
"from transformers import DataCollatorForTokenClassification\n",
"\n",
"from dataclasses import dataclass\n",
"from typing import Dict, List, Optional, Tuple, Union\n",
"\n",
"# for custom DataCollator\n",
"from transformers.data.data_collator import DataCollatorMixin\n",
"from transformers.tokenization_utils_base import PreTrainedTokenizerBase\n",
"from transformers.utils import PaddingStrategy\n",
"\n",
"from datasets import Dataset\n",
"\n",
"from scipy.special import expit\n",
"\n",
"import peft\n",
"from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "5ec16a71-ed5d-46a6-98b2-55bc5d0fbe07",
"metadata": {},
"outputs": [],
"source": [
"cnn_head=True #False set True for Rostlab/prot_t5_xl_half_uniref50-enc\n",
"ffn_head=False #False\n",
"transformer_head=False\n",
"custom_lora=True #False #only true for Rostlab/prot_t5_xl_half_uniref50-enc"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "cc7151ca-0daf-4e75-a865-ab52f9b28f2e",
"metadata": {},
"outputs": [],
"source": [
"class ClassConfig:\n",
" def __init__(self, dropout=0.2, num_labels=3):\n",
" self.dropout_rate = dropout\n",
" self.num_labels = num_labels\n",
"\n",
"class T5EncoderForTokenClassification(T5PreTrainedModel):\n",
"\n",
" def __init__(self, config: T5Config, class_config: ClassConfig):\n",
" super().__init__(config)\n",
" self.num_labels = class_config.num_labels\n",
" self.config = config\n",
"\n",
" self.shared = nn.Embedding(config.vocab_size, config.d_model)\n",
"\n",
" encoder_config = copy.deepcopy(config)\n",
" encoder_config.use_cache = False\n",
" encoder_config.is_encoder_decoder = False\n",
" self.encoder = T5Stack(encoder_config, self.shared)\n",
"\n",
" self.dropout = nn.Dropout(class_config.dropout_rate)\n",
"\n",
" # Initialize different heads based on class_config\n",
" if cnn_head:\n",
" self.cnn = nn.Conv1d(config.hidden_size, 512, kernel_size=3, padding=1)\n",
" self.classifier = nn.Linear(512, class_config.num_labels)\n",
" elif ffn_head:\n",
" # Multi-layer feed-forward network (FFN) head\n",
" self.ffn = nn.Sequential(\n",
" nn.Linear(config.hidden_size, 512),\n",
" nn.ReLU(),\n",
" nn.Linear(512, 256),\n",
" nn.ReLU(),\n",
" nn.Linear(256, class_config.num_labels)\n",
" )\n",
" elif transformer_head:\n",
" # Transformer layer head\n",
" encoder_layer = nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=8)\n",
" self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=1)\n",
" self.classifier = nn.Linear(config.hidden_size, class_config.num_labels)\n",
" else:\n",
" # Default classification head\n",
" self.classifier = nn.Linear(config.hidden_size, class_config.num_labels)\n",
" \n",
" self.post_init()\n",
"\n",
" # Model parallel\n",
" self.model_parallel = False\n",
" self.device_map = None\n",
"\n",
" def parallelize(self, device_map=None):\n",
" self.device_map = (\n",
" get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))\n",
" if device_map is None\n",
" else device_map\n",
" )\n",
" assert_device_map(self.device_map, len(self.encoder.block))\n",
" self.encoder.parallelize(self.device_map)\n",
" self.classifier = self.classifier.to(self.encoder.first_device)\n",
" self.model_parallel = True\n",
"\n",
" def deparallelize(self):\n",
" self.encoder.deparallelize()\n",
" self.encoder = self.encoder.to(\"cpu\")\n",
" self.model_parallel = False\n",
" self.device_map = None\n",
" torch.cuda.empty_cache()\n",
"\n",
" def get_input_embeddings(self):\n",
" return self.shared\n",
"\n",
" def set_input_embeddings(self, new_embeddings):\n",
" self.shared = new_embeddings\n",
" self.encoder.set_input_embeddings(new_embeddings)\n",
"\n",
" def get_encoder(self):\n",
" return self.encoder\n",
"\n",
" def _prune_heads(self, heads_to_prune):\n",
" for layer, heads in heads_to_prune.items():\n",
" self.encoder.layer[layer].attention.prune_heads(heads)\n",
"\n",
" def forward(\n",
" self,\n",
" input_ids=None,\n",
" attention_mask=None,\n",
" head_mask=None,\n",
" inputs_embeds=None,\n",
" labels=None,\n",
" output_attentions=None,\n",
" output_hidden_states=None,\n",
" return_dict=None,\n",
" ):\n",
" return_dict = return_dict if return_dict is not None else self.config.use_return_dict\n",
"\n",
" outputs = self.encoder(\n",
" input_ids=input_ids,\n",
" attention_mask=attention_mask,\n",
" inputs_embeds=inputs_embeds,\n",
" head_mask=head_mask,\n",
" output_attentions=output_attentions,\n",
" output_hidden_states=output_hidden_states,\n",
" return_dict=return_dict,\n",
" )\n",
"\n",
" sequence_output = outputs[0]\n",
" sequence_output = self.dropout(sequence_output)\n",
"\n",
" # Forward pass through the selected head\n",
" if cnn_head:\n",
" # CNN head\n",
" sequence_output = sequence_output.permute(0, 2, 1) # Prepare shape for CNN\n",
" cnn_output = self.cnn(sequence_output)\n",
" cnn_output = F.relu(cnn_output)\n",
" cnn_output = cnn_output.permute(0, 2, 1) # Shape back for classifier\n",
" logits = self.classifier(cnn_output)\n",
" elif ffn_head:\n",
" # FFN head\n",
" logits = self.ffn(sequence_output)\n",
" elif transformer_head:\n",
" # Transformer head\n",
" transformer_output = self.transformer_encoder(sequence_output)\n",
" logits = self.classifier(transformer_output)\n",
" else:\n",
" # Default classification head\n",
" logits = self.classifier(sequence_output)\n",
"\n",
" loss = None\n",
" if labels is not None:\n",
" loss_fct = CrossEntropyLoss()\n",
" active_loss = attention_mask.view(-1) == 1\n",
" active_logits = logits.view(-1, self.num_labels)\n",
" active_labels = torch.where(\n",
" active_loss, labels.view(-1), torch.tensor(-100).type_as(labels)\n",
" )\n",
" valid_logits = active_logits[active_labels != -100]\n",
" valid_labels = active_labels[active_labels != -100]\n",
" valid_labels = valid_labels.to(valid_logits.device)\n",
" valid_labels = valid_labels.long()\n",
" loss = loss_fct(valid_logits, valid_labels)\n",
"\n",
" if not return_dict:\n",
" output = (logits,) + outputs[2:]\n",
" return ((loss,) + output) if loss is not None else output\n",
"\n",
" return TokenClassifierOutput(\n",
" loss=loss,\n",
" logits=logits,\n",
" hidden_states=outputs.hidden_states,\n",
" attentions=outputs.attentions,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e5e751ba-f4d3-4a28-bea0-82633f1dabb4",
"metadata": {},
"outputs": [],
"source": [
"# Modifies an existing transformer and introduce the LoRA layers\n",
"\n",
"class CustomLoRAConfig:\n",
" def __init__(self):\n",
" self.lora_rank = 4\n",
" self.lora_init_scale = 0.01\n",
" self.lora_modules = \".*SelfAttention|.*EncDecAttention\"\n",
" self.lora_layers = \"q|k|v|o\"\n",
" self.trainable_param_names = \".*layer_norm.*|.*lora_[ab].*\"\n",
" self.lora_scaling_rank = 1\n",
" # lora_modules and lora_layers are speicified with regular expressions\n",
" # see https://www.w3schools.com/python/python_regex.asp for reference\n",
" \n",
"class LoRALinear(nn.Module):\n",
" def __init__(self, linear_layer, rank, scaling_rank, init_scale):\n",
" super().__init__()\n",
" self.in_features = linear_layer.in_features\n",
" self.out_features = linear_layer.out_features\n",
" self.rank = rank\n",
" self.scaling_rank = scaling_rank\n",
" self.weight = linear_layer.weight\n",
" self.bias = linear_layer.bias\n",
" if self.rank > 0:\n",
" self.lora_a = nn.Parameter(torch.randn(rank, linear_layer.in_features) * init_scale)\n",
" if init_scale < 0:\n",
" self.lora_b = nn.Parameter(torch.randn(linear_layer.out_features, rank) * init_scale)\n",
" else:\n",
" self.lora_b = nn.Parameter(torch.zeros(linear_layer.out_features, rank))\n",
" if self.scaling_rank:\n",
" self.multi_lora_a = nn.Parameter(\n",
" torch.ones(self.scaling_rank, linear_layer.in_features)\n",
" + torch.randn(self.scaling_rank, linear_layer.in_features) * init_scale\n",
" )\n",
" if init_scale < 0:\n",
" self.multi_lora_b = nn.Parameter(\n",
" torch.ones(linear_layer.out_features, self.scaling_rank)\n",
" + torch.randn(linear_layer.out_features, self.scaling_rank) * init_scale\n",
" )\n",
" else:\n",
" self.multi_lora_b = nn.Parameter(torch.ones(linear_layer.out_features, self.scaling_rank))\n",
"\n",
" def forward(self, input):\n",
" if self.scaling_rank == 1 and self.rank == 0:\n",
" # parsimonious implementation for ia3 and lora scaling\n",
" if self.multi_lora_a.requires_grad:\n",
" hidden = F.linear((input * self.multi_lora_a.flatten()), self.weight, self.bias)\n",
" else:\n",
" hidden = F.linear(input, self.weight, self.bias)\n",
" if self.multi_lora_b.requires_grad:\n",
" hidden = hidden * self.multi_lora_b.flatten()\n",
" return hidden\n",
" else:\n",
" # general implementation for lora (adding and scaling)\n",
" weight = self.weight\n",
" if self.scaling_rank:\n",
" weight = weight * torch.matmul(self.multi_lora_b, self.multi_lora_a) / self.scaling_rank\n",
" if self.rank:\n",
" weight = weight + torch.matmul(self.lora_b, self.lora_a) / self.rank\n",
" return F.linear(input, weight, self.bias)\n",
"\n",
" def extra_repr(self):\n",
" return \"in_features={}, out_features={}, bias={}, rank={}, scaling_rank={}\".format(\n",
" self.in_features, self.out_features, self.bias is not None, self.rank, self.scaling_rank\n",
" )\n",
"\n",
"\n",
"def modify_with_lora(transformer, config):\n",
" for m_name, module in dict(transformer.named_modules()).items():\n",
" if re.fullmatch(config.lora_modules, m_name):\n",
" for c_name, layer in dict(module.named_children()).items():\n",
" if re.fullmatch(config.lora_layers, c_name):\n",
" assert isinstance(\n",
" layer, nn.Linear\n",
" ), f\"LoRA can only be applied to torch.nn.Linear, but {layer} is {type(layer)}.\"\n",
" setattr(\n",
" module,\n",
" c_name,\n",
" LoRALinear(layer, config.lora_rank, config.lora_scaling_rank, config.lora_init_scale),\n",
" )\n",
" return transformer\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "43a56311-3279-466a-bc95-590381f1b13c",
"metadata": {},
"outputs": [],
"source": [
"def load_T5_model_classification(checkpoint, num_labels, half_precision, full = False, deepspeed=True):\n",
" # Load model and tokenizer\n",
"\n",
" if \"ankh\" in checkpoint :\n",
" model = T5EncoderModel.from_pretrained(checkpoint)\n",
" tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"\n",
" elif \"prot_t5\" in checkpoint:\n",
" # possible to load the half precision model (thanks to @pawel-rezo for pointing that out)\n",
" if half_precision and deepspeed:\n",
" #tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)\n",
" #model = T5EncoderModel.from_pretrained(\"Rostlab/prot_t5_xl_half_uniref50-enc\", torch_dtype=torch.float16)#.to(torch.device('cuda')\n",
" tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)\n",
" model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))\n",
" else:\n",
" model = T5EncoderModel.from_pretrained(checkpoint)\n",
" tokenizer = T5Tokenizer.from_pretrained(checkpoint)\n",
" \n",
" elif \"ProstT5\" in checkpoint:\n",
" if half_precision and deepspeed: \n",
" tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)\n",
" model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))\n",
" else:\n",
" model = T5EncoderModel.from_pretrained(checkpoint)\n",
" tokenizer = T5Tokenizer.from_pretrained(checkpoint) \n",
" \n",
" # Create new Classifier model with PT5 dimensions\n",
" class_config=ClassConfig(num_labels=num_labels)\n",
" class_model=T5EncoderForTokenClassification(model.config,class_config)\n",
" \n",
" # Set encoder and embedding weights to checkpoint weights\n",
" class_model.shared=model.shared\n",
" class_model.encoder=model.encoder \n",
" \n",
" # Delete the checkpoint model\n",
" model=class_model\n",
" del class_model\n",
" \n",
" if full == True:\n",
" return model, tokenizer \n",
" \n",
" # Print number of trainable parameters\n",
" model_parameters = filter(lambda p: p.requires_grad, model.parameters())\n",
" params = sum([np.prod(p.size()) for p in model_parameters])\n",
" print(\"T5_Classfier\\nTrainable Parameter: \"+ str(params)) \n",
"\n",
" if custom_lora:\n",
" #the linear CustomLoRAConfig allows better quality predictions, but more memory is needed\n",
" # Add model modification lora\n",
" config = CustomLoRAConfig()\n",
" \n",
" # Add LoRA layers\n",
" model = modify_with_lora(model, config)\n",
" \n",
" # Freeze Embeddings and Encoder (except LoRA)\n",
" for (param_name, param) in model.shared.named_parameters():\n",
" param.requires_grad = False\n",
" for (param_name, param) in model.encoder.named_parameters():\n",
" param.requires_grad = False \n",
" \n",
" for (param_name, param) in model.named_parameters():\n",
" if re.fullmatch(config.trainable_param_names, param_name):\n",
" param.requires_grad = True\n",
"\n",
" else:\n",
" # lora modification\n",
" peft_config = LoraConfig(\n",
" r=4, lora_alpha=1, bias=\"all\", target_modules=[\"q\",\"k\",\"v\",\"o\"]\n",
" )\n",
" \n",
" model = inject_adapter_in_model(peft_config, model)\n",
" \n",
" # Unfreeze the prediction head\n",
" for (param_name, param) in model.classifier.named_parameters():\n",
" param.requires_grad = True \n",
"\n",
" # Print trainable Parameter \n",
" model_parameters = filter(lambda p: p.requires_grad, model.parameters())\n",
" params = sum([np.prod(p.size()) for p in model_parameters])\n",
" print(\"T5_LoRA_Classfier\\nTrainable Parameter: \"+ str(params) + \"\\n\")\n",
" \n",
" return model, tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "7ba720bc-a003-4984-a965-cb2f42344e85",
"metadata": {},
"outputs": [],
"source": [
"class EsmForTokenClassificationCustom(EsmPreTrainedModel):\n",
" _keys_to_ignore_on_load_unexpected = [r\"pooler\"]\n",
" _keys_to_ignore_on_load_missing = [r\"position_ids\", r\"cnn\", r\"ffn\", r\"transformer\"]\n",
"\n",
" def __init__(self, config):\n",
" super().__init__(config)\n",
" self.num_labels = config.num_labels\n",
" self.esm = EsmModel(config, add_pooling_layer=False)\n",
" self.dropout = nn.Dropout(config.hidden_dropout_prob)\n",
"\n",
" if cnn_head:\n",
" self.cnn = nn.Conv1d(config.hidden_size, 512, kernel_size=3, padding=1)\n",
" self.classifier = nn.Linear(512, config.num_labels)\n",
" elif ffn_head:\n",
" # Multi-layer feed-forward network (FFN) as an alternative head\n",
" self.ffn = nn.Sequential(\n",
" nn.Linear(config.hidden_size, 512),\n",
" nn.ReLU(),\n",
" nn.Linear(512, 256),\n",
" nn.ReLU(),\n",
" nn.Linear(256, config.num_labels)\n",
" )\n",
" elif transformer_head:\n",
" # Transformer layer as an alternative head\n",
" encoder_layer = nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=8)\n",
" self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=1)\n",
" self.classifier = nn.Linear(config.hidden_size, config.num_labels)\n",
" else:\n",
" # Default classification head\n",
" self.classifier = nn.Linear(config.hidden_size, config.num_labels)\n",
"\n",
" self.init_weights()\n",
"\n",
" def forward(\n",
" self,\n",
" input_ids: Optional[torch.LongTensor] = None,\n",
" attention_mask: Optional[torch.Tensor] = None,\n",
" position_ids: Optional[torch.LongTensor] = None,\n",
" head_mask: Optional[torch.Tensor] = None,\n",
" inputs_embeds: Optional[torch.FloatTensor] = None,\n",
" labels: Optional[torch.LongTensor] = None,\n",
" output_attentions: Optional[bool] = None,\n",
" output_hidden_states: Optional[bool] = None,\n",
" return_dict: Optional[bool] = None,\n",
" ) -> Union[Tuple, TokenClassifierOutput]:\n",
" return_dict = return_dict if return_dict is not None else self.config.use_return_dict\n",
" outputs = self.esm(\n",
" input_ids,\n",
" attention_mask=attention_mask,\n",
" position_ids=position_ids,\n",
" head_mask=head_mask,\n",
" inputs_embeds=inputs_embeds,\n",
" output_attentions=output_attentions,\n",
" output_hidden_states=output_hidden_states,\n",
" return_dict=return_dict,\n",
" )\n",
" \n",
" sequence_output = outputs[0]\n",
" sequence_output = self.dropout(sequence_output)\n",
"\n",
" if cnn_head:\n",
" sequence_output = sequence_output.transpose(1, 2)\n",
" sequence_output = self.cnn(sequence_output)\n",
" sequence_output = sequence_output.transpose(1, 2)\n",
" logits = self.classifier(sequence_output)\n",
" elif ffn_head:\n",
" logits = self.ffn(sequence_output)\n",
" elif transformer_head:\n",
" # Apply transformer encoder for the transformer head\n",
" sequence_output = self.transformer_encoder(sequence_output)\n",
" logits = self.classifier(sequence_output)\n",
" else:\n",
" logits = self.classifier(sequence_output)\n",
"\n",
" loss = None\n",
" if labels is not None:\n",
" loss_fct = CrossEntropyLoss()\n",
" active_loss = attention_mask.view(-1) == 1\n",
" active_logits = logits.view(-1, self.num_labels)\n",
" active_labels = torch.where(\n",
" active_loss, labels.view(-1), torch.tensor(-100).type_as(labels)\n",
" )\n",
" valid_logits = active_logits[active_labels != -100]\n",
" valid_labels = active_labels[active_labels != -100]\n",
" valid_labels = valid_labels.type(torch.LongTensor).to('cuda:0')\n",
" loss = loss_fct(valid_logits, valid_labels)\n",
"\n",
" if not return_dict:\n",
" output = (logits,) + outputs[2:]\n",
" return ((loss,) + output) if loss is not None else output\n",
"\n",
" return TokenClassifierOutput(\n",
" loss=loss,\n",
" logits=logits,\n",
" hidden_states=outputs.hidden_states,\n",
" attentions=outputs.attentions,\n",
" )\n",
"\n",
" def _init_weights(self, module):\n",
" if isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d):\n",
" module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)\n",
" if module.bias is not None:\n",
" module.bias.data.zero_()\n",
"\n",
"# based on transformers DataCollatorForTokenClassification\n",
"@dataclass\n",
"class DataCollatorForTokenClassificationESM(DataCollatorMixin):\n",
" \"\"\"\n",
" Data collator that will dynamically pad the inputs received, as well as the labels.\n",
" Args:\n",
" tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):\n",
" The tokenizer used for encoding the data.\n",
" padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):\n",
" Select a strategy to pad the returned sequences (according to the model's padding side and padding index)\n",
" among:\n",
" - `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single\n",
" sequence is provided).\n",
" - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n",
" acceptable input length for the model if that argument is not provided.\n",
" - `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).\n",
" max_length (`int`, *optional*):\n",
" Maximum length of the returned list and optionally padding length (see above).\n",
" pad_to_multiple_of (`int`, *optional*):\n",
" If set will pad the sequence to a multiple of the provided value.\n",
" This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=\n",
" 7.5 (Volta).\n",
" label_pad_token_id (`int`, *optional*, defaults to -100):\n",
" The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).\n",
" return_tensors (`str`):\n",
" The type of Tensor to return. Allowable values are \"np\", \"pt\" and \"tf\".\n",
" \"\"\"\n",
"\n",
" tokenizer: PreTrainedTokenizerBase\n",
" padding: Union[bool, str, PaddingStrategy] = True\n",
" max_length: Optional[int] = None\n",
" pad_to_multiple_of: Optional[int] = None\n",
" label_pad_token_id: int = -100\n",
" return_tensors: str = \"pt\"\n",
"\n",
" def torch_call(self, features):\n",
" import torch\n",
"\n",
" label_name = \"label\" if \"label\" in features[0].keys() else \"labels\"\n",
" labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None\n",
"\n",
" no_labels_features = [{k: v for k, v in feature.items() if k != label_name} for feature in features]\n",
"\n",
" batch = self.tokenizer.pad(\n",
" no_labels_features,\n",
" padding=self.padding,\n",
" max_length=self.max_length,\n",
" pad_to_multiple_of=self.pad_to_multiple_of,\n",
" return_tensors=\"pt\",\n",
" )\n",
"\n",
" if labels is None:\n",
" return batch\n",
"\n",
" sequence_length = batch[\"input_ids\"].shape[1]\n",
" padding_side = self.tokenizer.padding_side\n",
"\n",
" def to_list(tensor_or_iterable):\n",
" if isinstance(tensor_or_iterable, torch.Tensor):\n",
" return tensor_or_iterable.tolist()\n",
" return list(tensor_or_iterable)\n",
"\n",
" if padding_side == \"right\":\n",
" batch[label_name] = [\n",
" # to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels\n",
" # changed to pad the special tokens at the beginning and end of the sequence\n",
" [self.label_pad_token_id] + to_list(label) + [self.label_pad_token_id] * (sequence_length - len(label)-1) for label in labels\n",
" ]\n",
" else:\n",
" batch[label_name] = [\n",
" [self.label_pad_token_id] * (sequence_length - len(label)) + to_list(label) for label in labels\n",
" ]\n",
"\n",
" batch[label_name] = torch.tensor(batch[label_name], dtype=torch.float)\n",
" return batch\n",
"\n",
"def _torch_collate_batch(examples, tokenizer, pad_to_multiple_of: Optional[int] = None):\n",
" \"\"\"Collate `examples` into a batch, using the information in `tokenizer` for padding if necessary.\"\"\"\n",
" import torch\n",
"\n",
" # Tensorize if necessary.\n",
" if isinstance(examples[0], (list, tuple, np.ndarray)):\n",
" examples = [torch.tensor(e, dtype=torch.long) for e in examples]\n",
"\n",
" length_of_first = examples[0].size(0)\n",
"\n",
" # Check if padding is necessary.\n",
"\n",
" are_tensors_same_length = all(x.size(0) == length_of_first for x in examples)\n",
" if are_tensors_same_length and (pad_to_multiple_of is None or length_of_first % pad_to_multiple_of == 0):\n",
" return torch.stack(examples, dim=0)\n",
"\n",
" # If yes, check if we have a `pad_token`.\n",
" if tokenizer._pad_token is None:\n",
" raise ValueError(\n",
" \"You are attempting to pad samples but the tokenizer you are using\"\n",
" f\" ({tokenizer.__class__.__name__}) does not have a pad token.\"\n",
" )\n",
"\n",
" # Creating the full tensor and filling it with our data.\n",
" max_length = max(x.size(0) for x in examples)\n",
" if pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):\n",
" max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of\n",
" result = examples[0].new_full([len(examples), max_length], tokenizer.pad_token_id)\n",
" for i, example in enumerate(examples):\n",
" if tokenizer.padding_side == \"right\":\n",
" result[i, : example.shape[0]] = example\n",
" else:\n",
" result[i, -example.shape[0] :] = example\n",
" return result\n",
"\n",
"def tolist(x):\n",
" if isinstance(x, list):\n",
" return x\n",
" elif hasattr(x, \"numpy\"): # Checks for TF tensors without needing the import\n",
" x = x.numpy()\n",
" return x.tolist()"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "ea511812-1244-4e51-b63c-b4da7822f0b7",
"metadata": {},
"outputs": [],
"source": [
"#load ESM2 models\n",
"def load_esm_model_classification(checkpoint, num_labels, half_precision, full=False, deepspeed=True):\n",
" \n",
" tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
"\n",
" \n",
" if half_precision and deepspeed:\n",
" model = EsmForTokenClassificationCustom.from_pretrained(checkpoint, \n",
" num_labels = num_labels, \n",
" ignore_mismatched_sizes=True,\n",
" torch_dtype = torch.float16)\n",
" else:\n",
" model = EsmForTokenClassificationCustom.from_pretrained(checkpoint, \n",
" num_labels = num_labels,\n",
" ignore_mismatched_sizes=True)\n",
" \n",
" if full == True:\n",
" return model, tokenizer \n",
" \n",
" peft_config = LoraConfig(\n",
" r=4, lora_alpha=1, bias=\"all\", target_modules=[\"query\",\"key\",\"value\",\"dense\"]\n",
" )\n",
" \n",
" model = inject_adapter_in_model(peft_config, model)\n",
"\n",
" #model.gradient_checkpointing_enable()\n",
" \n",
" # Unfreeze the prediction head\n",
" for (param_name, param) in model.classifier.named_parameters():\n",
" param.requires_grad = True \n",
" \n",
" return model, tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "8941bbbb-57c5-4f3d-89d9-12b2d306e7a1",
"metadata": {},
"outputs": [],
"source": [
"checkpoint='../Pretrained/Rostlab/prot_t5_xl_uniref50'\n",
"best_model_path='../refined_models/ChallengeFinetuning/Rostlab/prot_t5_xl_uniref50/manual_checkpoint/cpt.pth'\n",
"full=False\n",
"deepspeed=False\n",
"mixed=False \n",
"num_labels=2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f007331-34d4-4c1d-9311-e91db23d9ed5",
"metadata": {},
"outputs": [],
"source": [
"/home/frohlkin/Projects/PLM/Publication/hf_webpage/pretrained"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "18d4ad06-b195-4cc6-a3c8-fa3e761838dc",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"../Pretrained/Rostlab/prot_t5_xl_uniref50 2 False False False\n",
"T5_Classfier\n",
"Trainable Parameter: 1209716226\n",
"T5_LoRA_Classfier\n",
"Trainable Parameter: 4082178\n",
"\n"
]
},
{
"data": {
"text/plain": [
"<All keys matched successfully>"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(checkpoint, num_labels, mixed, full, deepspeed)\n",
" \n",
"# Determine model type and load accordingly\n",
"if \"esm\" in checkpoint:\n",
" model, tokenizer = load_esm_model_classification(checkpoint, num_labels, mixed, full, deepspeed)\n",
"else:\n",
" model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)\n",
"\n",
"# Load the best model state\n",
"state_dict = torch.load(best_model_path, weights_only=True)\n",
"model.load_state_dict(state_dict)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "4e215923-dfe2-4426-aedf-5cb81f7f0db2",
"metadata": {},
"outputs": [],
"source": [
"test_one_letter_sequence='AWYAAK'\n",
"max_length=1500"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "7174ea02-ed51-46f5-84c0-6bcd760670d4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(7,)"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def create_dataset(tokenizer,seqs,labels,checkpoint):\n",
" \n",
" tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True)\n",
" dataset = Dataset.from_dict(tokenized)\n",
" \n",
" if (\"esm\" in checkpoint) or (\"ProstT5\" in checkpoint):\n",
" labels = [l[:max_length-2] for l in labels] \n",
" else:\n",
" labels = [l[:max_length-1] for l in labels] \n",
" \n",
" dataset = dataset.add_column(\"labels\", labels)\n",
" \n",
" return dataset\n",
" \n",
"def convert_predictions(input_logits):\n",
" all_probs = []\n",
" for logits in input_logits:\n",
" logits = logits.reshape(-1, 2)\n",
"\n",
" # Mask out irrelevant regions\n",
" # Compute probabilities for class 1\n",
" probabilities_class1 = expit(logits[:, 1] - logits[:, 0])\n",
" \n",
" all_probs.append(probabilities_class1)\n",
" \n",
" return np.concatenate(all_probs)\n",
" \n",
" \n",
"dummy_labels=[np.zeros(len(test_one_letter_sequence))]\n",
"# Replace uncommon amino acids with \"X\"\n",
"test_one_letter_sequence = test_one_letter_sequence.replace(\"O\", \"X\").replace(\"B\", \"X\").replace(\"U\", \"X\").replace(\"Z\", \"X\").replace(\"J\", \"X\")\n",
"\n",
"# Add spaces between each amino acid for ProtT5 and ProstT5 models\n",
"if \"Rostlab\" in checkpoint:\n",
" test_one_letter_sequence = \" \".join(test_one_letter_sequence)\n",
"\n",
"# Add <AA2fold> for ProstT5 model input format\n",
"if \"ProstT5\" in checkpoint:\n",
" test_one_letter_sequence = \"<AA2fold> \" + test_one_letter_sequence\n",
" \n",
"test_dataset=create_dataset(tokenizer,[test_one_letter_sequence],dummy_labels,checkpoint)\n",
"\n",
"if (\"esm\" in checkpoint) or (\"ProstT5\" in checkpoint):\n",
" data_collator = DataCollatorForTokenClassificationESM(tokenizer)\n",
"else:\n",
" data_collator = DataCollatorForTokenClassification(tokenizer)\n",
"\n",
"test_loader = DataLoader(test_dataset, batch_size=1, collate_fn=data_collator)\n",
"\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"model.to(device)\n",
"for batch in test_loader:\n",
" input_ids = batch['input_ids'].to(device)\n",
" attention_mask = batch['attention_mask'].to(device)\n",
" labels = batch['labels'] # Ensure to get labels from batch\n",
"\n",
" outputs = model(input_ids, attention_mask=attention_mask)\n",
" logits = outputs.logits.detach().cpu().numpy()\n",
"\n",
"logits=convert_predictions(logits)\n",
"logits.shape\n",
"\n",
"def normalize_scores(scores):\n",
" min_score = np.min(scores)\n",
" max_score = np.max(scores)\n",
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
"\n",
"normalized_scores = normalize_scores(logits)\n",
"\n",
"normalized_scores.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58b5ae4d-9e8e-4d07-ab46-76d23cc29016",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:LLM] *",
"language": "python",
"name": "conda-env-LLM-py"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|