Spaces:
Sleeping
Sleeping
File size: 72,611 Bytes
b081fc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 29,
"id": "e776d9d6-417e-46d4-8061-846c055e1f8a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7873\n",
"* Running on public URL: https://120000a6aa9d78e04c.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://120000a6aa9d78e04c.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from datetime import datetime\n",
"import gradio as gr\n",
"import requests\n",
"from Bio.PDB import PDBParser, MMCIFParser, PDBIO, Select\n",
"from Bio.PDB.Polypeptide import is_aa\n",
"from Bio.SeqUtils import seq1\n",
"from typing import Optional, Tuple\n",
"import numpy as np\n",
"import os\n",
"from gradio_molecule3d import Molecule3D\n",
"\n",
"#from model_loader import load_model\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"from torch.utils.data import DataLoader\n",
"\n",
"import re\n",
"import pandas as pd\n",
"import copy\n",
"\n",
"#import transformers\n",
"#from transformers import AutoTokenizer, DataCollatorForTokenClassification\n",
"\n",
"#from datasets import Dataset\n",
"\n",
"from scipy.special import expit\n",
"\n",
"def normalize_scores(scores):\n",
" min_score = np.min(scores)\n",
" max_score = np.max(scores)\n",
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
"\n",
"def read_mol(pdb_path):\n",
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
" with open(pdb_path, 'r') as f:\n",
" return f.read()\n",
"\n",
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
" \"\"\"\n",
" Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
" If a structure file already exists locally, it uses that.\n",
" \"\"\"\n",
" file_path = download_structure(pdb_id, output_dir)\n",
" if file_path:\n",
" return file_path\n",
" else:\n",
" return None\n",
"\n",
"def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
" \"\"\"\n",
" Attempt to download the structure file in CIF or PDB format.\n",
" Returns the path to the downloaded file, or None if download fails.\n",
" \"\"\"\n",
" for ext in ['.cif', '.pdb']:\n",
" file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
" if os.path.exists(file_path):\n",
" return file_path\n",
" url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
" try:\n",
" response = requests.get(url, timeout=10)\n",
" if response.status_code == 200:\n",
" with open(file_path, 'wb') as f:\n",
" f.write(response.content)\n",
" return file_path\n",
" except Exception as e:\n",
" print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
" return None\n",
"\n",
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
" \"\"\"\n",
" Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
" \"\"\"\n",
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
" parser = MMCIFParser(QUIET=True)\n",
" structure = parser.get_structure('protein', cif_path)\n",
" io = PDBIO()\n",
" io.set_structure(structure)\n",
" io.save(pdb_path)\n",
" return pdb_path\n",
"\n",
"def fetch_pdb(pdb_id):\n",
" pdb_path = fetch_structure(pdb_id)\n",
" if not pdb_path:\n",
" return None\n",
" _, ext = os.path.splitext(pdb_path)\n",
" if ext == '.cif':\n",
" pdb_path = convert_cif_to_pdb(pdb_path)\n",
" return pdb_path\n",
"\n",
"def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n",
" \"\"\"\n",
" Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n",
" \"\"\"\n",
" # Read the original PDB file\n",
" parser = PDBParser(QUIET=True)\n",
" structure = parser.get_structure('protein', input_pdb)\n",
" \n",
" # Prepare a new structure with only the specified chain and selected residues\n",
" output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb\"\n",
" \n",
" # Create scores dictionary for easy lookup\n",
" scores_dict = {resi: score for resi, score in residue_scores}\n",
"\n",
" # Create a custom Select class\n",
" class ResidueSelector(Select):\n",
" def __init__(self, chain_id, selected_residues, scores_dict):\n",
" self.chain_id = chain_id\n",
" self.selected_residues = selected_residues\n",
" self.scores_dict = scores_dict\n",
" \n",
" def accept_chain(self, chain):\n",
" return chain.id == self.chain_id\n",
" \n",
" def accept_residue(self, residue):\n",
" return residue.id[1] in self.selected_residues\n",
"\n",
" def accept_atom(self, atom):\n",
" if atom.parent.id[1] in self.scores_dict:\n",
" atom.bfactor = np.absolute(1-self.scores_dict[atom.parent.id[1]]) * 100\n",
" return True\n",
"\n",
" # Prepare output PDB with selected chain and residues, modified B-factors\n",
" io = PDBIO()\n",
" selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n",
" \n",
" io.set_structure(structure[0])\n",
" io.save(output_pdb, selector)\n",
" \n",
" return output_pdb\n",
"\n",
"def process_pdb(pdb_id_or_file, segment):\n",
" # Determine if input is a PDB ID or file path\n",
" if pdb_id_or_file.endswith('.pdb'):\n",
" pdb_path = pdb_id_or_file\n",
" pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
" else:\n",
" pdb_id = pdb_id_or_file\n",
" pdb_path = fetch_pdb(pdb_id)\n",
" \n",
" if not pdb_path:\n",
" return \"Failed to fetch PDB file\", None, None\n",
" \n",
" # Determine the file format and choose the appropriate parser\n",
" _, ext = os.path.splitext(pdb_path)\n",
" parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
" \n",
" try:\n",
" # Parse the structure file\n",
" structure = parser.get_structure('protein', pdb_path)\n",
" except Exception as e:\n",
" return f\"Error parsing structure file: {e}\", None, None\n",
" \n",
" # Extract the specified chain\n",
" try:\n",
" chain = structure[0][segment]\n",
" except KeyError:\n",
" return \"Invalid Chain ID\", None, None\n",
" \n",
" protein_residues = [res for res in chain if is_aa(res)]\n",
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
" sequence_id = [res.id[1] for res in protein_residues]\n",
"\n",
" visualized_sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
" if sequence != visualized_sequence:\n",
" raise ValueError(\"The visualized sequence does not match the prediction sequence\")\n",
" \n",
" scores = np.random.rand(len(sequence))\n",
" normalized_scores = normalize_scores(scores)\n",
" \n",
" # Zip residues with scores to track the residue ID and score\n",
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
"\n",
" \n",
" # Define the score brackets\n",
" score_brackets = {\n",
" \"0.0-0.2\": (0.0, 0.2),\n",
" \"0.2-0.4\": (0.2, 0.4),\n",
" \"0.4-0.6\": (0.4, 0.6),\n",
" \"0.6-0.8\": (0.6, 0.8),\n",
" \"0.8-1.0\": (0.8, 1.0)\n",
" }\n",
" \n",
" # Initialize a dictionary to store residues by bracket\n",
" residues_by_bracket = {bracket: [] for bracket in score_brackets}\n",
" \n",
" # Categorize residues into brackets\n",
" for resi, score in residue_scores:\n",
" for bracket, (lower, upper) in score_brackets.items():\n",
" if lower <= score < upper:\n",
" residues_by_bracket[bracket].append(resi)\n",
" break\n",
" \n",
" # Preparing the result string\n",
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
" result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
" result_str += \"Residues by Score Brackets:\\n\\n\"\n",
" \n",
" # Add residues for each bracket\n",
" for bracket, residues in residues_by_bracket.items():\n",
" result_str += f\"Bracket {bracket}:\\n\"\n",
" result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\"\n",
" result_str += \"\\n\".join([\n",
" f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
" for i, res in enumerate(protein_residues) if res.id[1] in residues\n",
" ])\n",
" result_str += \"\\n\\n\"\n",
"\n",
" # Create chain-specific PDB with scores in B-factor\n",
" scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n",
"\n",
" # Molecule visualization with updated script with color mapping\n",
" mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)\n",
"\n",
" # Improved PyMOL command suggestions\n",
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
" pymol_commands = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
" \n",
" pymol_commands += f\"\"\"\n",
" # PyMOL Visualization Commands\n",
" load {os.path.abspath(pdb_path)}, protein\n",
" hide everything, all\n",
" show cartoon, chain {segment}\n",
" color white, chain {segment}\n",
" \"\"\"\n",
" \n",
" # Define colors for each score bracket\n",
" bracket_colors = {\n",
" \"0.0-0.2\": \"white\",\n",
" \"0.2-0.4\": \"lightorange\",\n",
" \"0.4-0.6\": \"orange\",\n",
" \"0.6-0.8\": \"orangered\",\n",
" \"0.8-1.0\": \"red\"\n",
" }\n",
" \n",
" # Add PyMOL commands for each score bracket\n",
" for bracket, residues in residues_by_bracket.items():\n",
" if residues: # Only add commands if there are residues in this bracket\n",
" color = bracket_colors[bracket]\n",
" resi_list = '+'.join(map(str, residues))\n",
" pymol_commands += f\"\"\"\n",
" select bracket_{bracket.replace('.', '').replace('-', '_')}, resi {resi_list} and chain {segment}\n",
" show sticks, bracket_{bracket.replace('.', '').replace('-', '_')}\n",
" color {color}, bracket_{bracket.replace('.', '').replace('-', '_')}\n",
" \"\"\"\n",
" \n",
" # Create prediction and scored PDB files\n",
" prediction_file = f\"{pdb_id}_binding_site_residues.txt\"\n",
" with open(prediction_file, \"w\") as f:\n",
" f.write(result_str)\n",
" \n",
" return pymol_commands, mol_vis, [prediction_file,scored_pdb]\n",
"\n",
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
" # More granular scoring for visualization\n",
" mol = read_mol(input_pdb) # Read PDB file content\n",
"\n",
" # Prepare high-scoring residues script if scores are provided\n",
" high_score_script = \"\"\n",
" if residue_scores is not None:\n",
" # Filter residues based on their scores\n",
" class1_score_residues = [resi for resi, score in residue_scores if 0.0 < score <= 0.2]\n",
" class2_score_residues = [resi for resi, score in residue_scores if 0.2 < score <= 0.4]\n",
" class3_score_residues = [resi for resi, score in residue_scores if 0.4 < score <= 0.6]\n",
" class4_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.8]\n",
" class5_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 1.0]\n",
" \n",
" high_score_script = \"\"\"\n",
" // Load the original model and apply white cartoon style\n",
" let chainModel = viewer.addModel(pdb, \"pdb\");\n",
" chainModel.setStyle({}, {});\n",
" chainModel.setStyle(\n",
" {\"chain\": \"%s\"}, \n",
" {\"cartoon\": {\"color\": \"white\"}}\n",
" );\n",
"\n",
" // Create a new model for high-scoring residues and apply red sticks style\n",
" let class1Model = viewer.addModel(pdb, \"pdb\");\n",
" class1Model.setStyle({}, {});\n",
" class1Model.setStyle(\n",
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
" {\"stick\": {\"color\": \"0xFFFFFF\", \"opacity\": 0.5}}\n",
" );\n",
"\n",
" // Create a new model for high-scoring residues and apply red sticks style\n",
" let class2Model = viewer.addModel(pdb, \"pdb\");\n",
" class2Model.setStyle({}, {});\n",
" class2Model.setStyle(\n",
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
" {\"stick\": {\"color\": \"0xFFD580\", \"opacity\": 0.7}}\n",
" );\n",
"\n",
" // Create a new model for high-scoring residues and apply red sticks style\n",
" let class3Model = viewer.addModel(pdb, \"pdb\");\n",
" class3Model.setStyle({}, {});\n",
" class3Model.setStyle(\n",
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
" {\"stick\": {\"color\": \"0xFFA500\", \"opacity\": 1}}\n",
" );\n",
"\n",
" // Create a new model for high-scoring residues and apply red sticks style\n",
" let class4Model = viewer.addModel(pdb, \"pdb\");\n",
" class4Model.setStyle({}, {});\n",
" class4Model.setStyle(\n",
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
" {\"stick\": {\"color\": \"0xFF4500\", \"opacity\": 1}}\n",
" );\n",
"\n",
" // Create a new model for high-scoring residues and apply red sticks style\n",
" let class5Model = viewer.addModel(pdb, \"pdb\");\n",
" class5Model.setStyle({}, {});\n",
" class5Model.setStyle(\n",
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
" {\"stick\": {\"color\": \"0xFF0000\", \"alpha\": 1}}\n",
" );\n",
"\n",
" \"\"\" % (\n",
" segment,\n",
" segment,\n",
" \", \".join(str(resi) for resi in class1_score_residues),\n",
" segment,\n",
" \", \".join(str(resi) for resi in class2_score_residues),\n",
" segment,\n",
" \", \".join(str(resi) for resi in class3_score_residues),\n",
" segment,\n",
" \", \".join(str(resi) for resi in class4_score_residues),\n",
" segment,\n",
" \", \".join(str(resi) for resi in class5_score_residues)\n",
" )\n",
" \n",
" # Generate the full HTML content\n",
" html_content = f\"\"\"\n",
" <!DOCTYPE html>\n",
" <html>\n",
" <head> \n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
" <style>\n",
" .mol-container {{\n",
" width: 100%;\n",
" height: 700px;\n",
" position: relative;\n",
" }}\n",
" </style>\n",
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
" </head>\n",
" <body>\n",
" <div id=\"container\" class=\"mol-container\"></div>\n",
" <script>\n",
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
" $(document).ready(function () {{\n",
" let element = $(\"#container\");\n",
" let config = {{ backgroundColor: \"white\" }};\n",
" let viewer = $3Dmol.createViewer(element, config);\n",
" \n",
" {high_score_script}\n",
" \n",
" // Add hover functionality\n",
" viewer.setHoverable(\n",
" {{}}, \n",
" true, \n",
" function(atom, viewer, event, container) {{\n",
" if (!atom.label) {{\n",
" atom.label = viewer.addLabel(\n",
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
" {{\n",
" position: atom, \n",
" backgroundColor: 'mintcream', \n",
" fontColor: 'black',\n",
" fontSize: 18,\n",
" padding: 4\n",
" }}\n",
" );\n",
" }}\n",
" }},\n",
" function(atom, viewer) {{\n",
" if (atom.label) {{\n",
" viewer.removeLabel(atom.label);\n",
" delete atom.label;\n",
" }}\n",
" }}\n",
" );\n",
" \n",
" viewer.zoomTo();\n",
" viewer.render();\n",
" viewer.zoom(0.8, 2000);\n",
" }});\n",
" </script>\n",
" </body>\n",
" </html>\n",
" \"\"\"\n",
" \n",
" # Return the HTML content within an iframe safely encoded for special characters\n",
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
"\n",
"# Gradio UI\n",
"with gr.Blocks(css=\"\"\"\n",
" /* Customize Gradio button colors */\n",
" #visualize-btn, #predict-btn {\n",
" background-color: #FF7300; /* Deep orange */\n",
" color: white;\n",
" border-radius: 5px;\n",
" padding: 10px;\n",
" font-weight: bold;\n",
" }\n",
" #visualize-btn:hover, #predict-btn:hover {\n",
" background-color: #CC5C00; /* Darkened orange on hover */\n",
" }\n",
"\"\"\") as demo:\n",
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
" \n",
" # Mode selection\n",
" mode = gr.Radio(\n",
" choices=[\"PDB ID\", \"Upload File\"],\n",
" value=\"PDB ID\",\n",
" label=\"Input Mode\",\n",
" info=\"Choose whether to input a PDB ID or upload a PDB/CIF file.\"\n",
" )\n",
"\n",
" # Input components based on mode\n",
" pdb_input = gr.Textbox(value=\"2F6V\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
" pdb_file = gr.File(label=\"Upload PDB/CIF File\", visible=False)\n",
" visualize_btn = gr.Button(\"Visualize Structure\", elem_id=\"visualize-btn\")\n",
"\n",
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
" {\n",
" \"model\": 0,\n",
" \"style\": \"cartoon\",\n",
" \"color\": \"whiteCarbon\",\n",
" \"residue_range\": \"\",\n",
" \"around\": 0,\n",
" \"byres\": False,\n",
" }\n",
" ])\n",
"\n",
" with gr.Row():\n",
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID (protein)\", placeholder=\"Enter Chain ID here...\",\n",
" info=\"Choose in which chain to predict binding sites.\")\n",
" prediction_btn = gr.Button(\"Predict Binding Site\", elem_id=\"predict-btn\")\n",
"\n",
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
" explanation_vis = gr.Markdown(\"\"\"\n",
" Score dependent colorcoding:\n",
" - 0.0-0.2: white \n",
" - 0.2–0.4: light orange \n",
" - 0.4–0.6: orange\n",
" - 0.6–0.8: orangered\n",
" - 0.8–1.0: red\n",
" \"\"\")\n",
" predictions_output = gr.Textbox(label=\"Visualize Prediction with PyMol\")\n",
" gr.Markdown(\"### Download:\\n- List of predicted binding site residues\\n- PDB with score in beta factor column\")\n",
" download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
" \n",
" def process_interface(mode, pdb_id, pdb_file, chain_id):\n",
" if mode == \"PDB ID\":\n",
" return process_pdb(pdb_id, chain_id)\n",
" elif mode == \"Upload File\":\n",
" _, ext = os.path.splitext(pdb_file.name)\n",
" file_path = os.path.join('./', f\"{_}{ext}\")\n",
" if ext == '.cif':\n",
" pdb_path = convert_cif_to_pdb(file_path)\n",
" else:\n",
" pdb_path= file_path\n",
" return process_pdb(pdb_path, chain_id)\n",
" else:\n",
" return \"Error: Invalid mode selected\", None, None\n",
"\n",
" def fetch_interface(mode, pdb_id, pdb_file):\n",
" if mode == \"PDB ID\":\n",
" return fetch_pdb(pdb_id)\n",
" elif mode == \"Upload File\":\n",
" _, ext = os.path.splitext(pdb_file.name)\n",
" file_path = os.path.join('./', f\"{_}{ext}\")\n",
" #print(ext)\n",
" if ext == '.cif':\n",
" pdb_path = convert_cif_to_pdb(file_path)\n",
" else:\n",
" pdb_path= file_path\n",
" #print(pdb_path)\n",
" return pdb_path\n",
" else:\n",
" return \"Error: Invalid mode selected\"\n",
"\n",
" def toggle_mode(selected_mode):\n",
" if selected_mode == \"PDB ID\":\n",
" return gr.update(visible=True), gr.update(visible=False)\n",
" else:\n",
" return gr.update(visible=False), gr.update(visible=True)\n",
"\n",
" mode.change(\n",
" toggle_mode,\n",
" inputs=[mode],\n",
" outputs=[pdb_input, pdb_file]\n",
" )\n",
"\n",
" prediction_btn.click(\n",
" process_interface, \n",
" inputs=[mode, pdb_input, pdb_file, segment_input], \n",
" outputs=[predictions_output, molecule_output, download_output]\n",
" )\n",
"\n",
" visualize_btn.click(\n",
" fetch_interface, \n",
" inputs=[mode, pdb_input, pdb_file], \n",
" outputs=molecule_output2\n",
" )\n",
"\n",
" gr.Markdown(\"## Examples\")\n",
" gr.Examples(\n",
" examples=[\n",
" [\"7RPZ\", \"A\"],\n",
" [\"2IWI\", \"B\"],\n",
" [\"7LCJ\", \"R\"]\n",
" ],\n",
" inputs=[pdb_input, segment_input],\n",
" outputs=[predictions_output, molecule_output, download_output]\n",
" )\n",
"\n",
"demo.launch(share=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "440c87ed-45c9-4501-b208-409cbfd7858b",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 21,
"id": "d70c40b9-5d5a-4795-b2a2-149c4a57d16e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/helpers.py:441: UserWarning: Examples will be cached but not all input components have example values. This may result in an exception being thrown by your function. If you do get an error while caching examples, make sure all of your inputs have example values for all of your examples or you provide default values for those particular parameters in your function.\n",
" warnings.warn(\n",
"INFO:__main__:Using cached structure: ./7rpz.cif\n",
"INFO:__main__:Using cached structure: ./2iwi.cif\n",
"INFO:__main__:Using cached structure: ./2f6v.cif\n",
"INFO:httpx:HTTP Request: GET http://127.0.0.1:7862/gradio_api/startup-events \"HTTP/1.1 200 OK\"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7862\n",
"Caching examples at: '/home/frohlkin/Projects/LargeLanguageModels/Publication/test_webpage/.gradio/cached_examples/148'\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:httpx:HTTP Request: HEAD http://127.0.0.1:7862/ \"HTTP/1.1 200 OK\"\n",
"INFO:httpx:HTTP Request: GET https://api.gradio.app/pkg-version \"HTTP/1.1 200 OK\"\n",
"INFO:httpx:HTTP Request: GET https://api.gradio.app/v3/tunnel-request \"HTTP/1.1 200 OK\"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on public URL: https://de785d7cce806497e9.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:httpx:HTTP Request: HEAD https://de785d7cce806497e9.gradio.live \"HTTP/1.1 200 OK\"\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://de785d7cce806497e9.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/routes.py\", line 990, in predict\n",
" output = await route_utils.call_process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/route_utils.py\", line 322, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/blocks.py\", line 2047, in process_api\n",
" result = await self.call_function(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/blocks.py\", line 1594, in call_function\n",
" prediction = await anyio.to_thread.run_sync( # type: ignore\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/anyio/to_thread.py\", line 56, in run_sync\n",
" return await get_async_backend().run_sync_in_worker_thread(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 2405, in run_sync_in_worker_thread\n",
" return await future\n",
" ^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 914, in run\n",
" result = context.run(func, *args)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/utils.py\", line 869, in wrapper\n",
" response = f(*args, **kwargs)\n",
" ^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/helpers.py\", line 355, in load_example_with_output\n",
" ) + self.load_from_cache(example_id)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/helpers.py\", line 579, in load_from_cache\n",
" output.append(component.read_from_flag(value_to_use))\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/components/base.py\", line 366, in read_from_flag\n",
" return self.data_model.from_json(json.loads(payload))\n",
" ^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/json/__init__.py\", line 346, in loads\n",
" return _default_decoder.decode(s)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/json/decoder.py\", line 337, in decode\n",
" obj, end = self.raw_decode(s, idx=_w(s, 0).end())\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/json/decoder.py\", line 355, in raw_decode\n",
" raise JSONDecodeError(\"Expecting value\", s, err.value) from None\n",
"json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)\n",
"Traceback (most recent call last):\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/routes.py\", line 990, in predict\n",
" output = await route_utils.call_process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/route_utils.py\", line 322, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/blocks.py\", line 2047, in process_api\n",
" result = await self.call_function(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/blocks.py\", line 1594, in call_function\n",
" prediction = await anyio.to_thread.run_sync( # type: ignore\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/anyio/to_thread.py\", line 56, in run_sync\n",
" return await get_async_backend().run_sync_in_worker_thread(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 2405, in run_sync_in_worker_thread\n",
" return await future\n",
" ^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 914, in run\n",
" result = context.run(func, *args)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/utils.py\", line 869, in wrapper\n",
" response = f(*args, **kwargs)\n",
" ^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/helpers.py\", line 355, in load_example_with_output\n",
" ) + self.load_from_cache(example_id)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/helpers.py\", line 579, in load_from_cache\n",
" output.append(component.read_from_flag(value_to_use))\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/components/base.py\", line 366, in read_from_flag\n",
" return self.data_model.from_json(json.loads(payload))\n",
" ^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/json/__init__.py\", line 346, in loads\n",
" return _default_decoder.decode(s)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/json/decoder.py\", line 337, in decode\n",
" obj, end = self.raw_decode(s, idx=_w(s, 0).end())\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/json/decoder.py\", line 355, in raw_decode\n",
" raise JSONDecodeError(\"Expecting value\", s, err.value) from None\n",
"json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)\n",
"Traceback (most recent call last):\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/routes.py\", line 990, in predict\n",
" output = await route_utils.call_process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/route_utils.py\", line 322, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/blocks.py\", line 2047, in process_api\n",
" result = await self.call_function(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/blocks.py\", line 1594, in call_function\n",
" prediction = await anyio.to_thread.run_sync( # type: ignore\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/anyio/to_thread.py\", line 56, in run_sync\n",
" return await get_async_backend().run_sync_in_worker_thread(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 2405, in run_sync_in_worker_thread\n",
" return await future\n",
" ^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 914, in run\n",
" result = context.run(func, *args)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/utils.py\", line 869, in wrapper\n",
" response = f(*args, **kwargs)\n",
" ^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/helpers.py\", line 355, in load_example_with_output\n",
" ) + self.load_from_cache(example_id)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/helpers.py\", line 579, in load_from_cache\n",
" output.append(component.read_from_flag(value_to_use))\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/site-packages/gradio/components/base.py\", line 366, in read_from_flag\n",
" return self.data_model.from_json(json.loads(payload))\n",
" ^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/json/__init__.py\", line 346, in loads\n",
" return _default_decoder.decode(s)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/json/decoder.py\", line 337, in decode\n",
" obj, end = self.raw_decode(s, idx=_w(s, 0).end())\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/frohlkin/anaconda3/envs/LLM/lib/python3.12/json/decoder.py\", line 355, in raw_decode\n",
" raise JSONDecodeError(\"Expecting value\", s, err.value) from None\n",
"json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)\n"
]
}
],
"source": [
"from datetime import datetime\n",
"import gradio as gr\n",
"import requests\n",
"from Bio.PDB import PDBParser, MMCIFParser, PDBIO, Select, Structure\n",
"from Bio.PDB.Polypeptide import is_aa\n",
"from Bio.SeqUtils import seq1\n",
"from typing import Optional, Tuple, Dict, List\n",
"import numpy as np\n",
"import os\n",
"from gradio_molecule3d import Molecule3D\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"from torch.utils.data import DataLoader\n",
"import re\n",
"import pandas as pd\n",
"import copy\n",
"from scipy.special import expit\n",
"import logging\n",
"import tempfile\n",
"\n",
"# Set up logging\n",
"logging.basicConfig(level=logging.INFO)\n",
"logger = logging.getLogger(__name__)\n",
"\n",
"class StructureError(Exception):\n",
" \"\"\"Custom exception for structure-related errors\"\"\"\n",
" pass\n",
"\n",
"def normalize_scores(scores: np.ndarray) -> np.ndarray:\n",
" \"\"\"Normalize scores to range [0,1]\"\"\"\n",
" min_score = np.min(scores)\n",
" max_score = np.max(scores)\n",
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
"\n",
"def read_mol(pdb_path: str) -> str:\n",
" \"\"\"Read molecular structure file and return its content\"\"\"\n",
" try:\n",
" with open(pdb_path, 'r') as f:\n",
" return f.read()\n",
" except Exception as e:\n",
" raise IOError(f\"Failed to read structure file: {e}\")\n",
"\n",
"def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
" \"\"\"Fetch structure file, trying multiple formats and sources\"\"\"\n",
" try:\n",
" # First try local cache\n",
" for ext in ['.cif', '.pdb']:\n",
" local_path = os.path.join(output_dir, f\"{pdb_id.lower()}{ext}\")\n",
" if os.path.exists(local_path):\n",
" logger.info(f\"Using cached structure: {local_path}\")\n",
" return local_path\n",
"\n",
" # Try different download sources\n",
" sources = [\n",
" f\"https://files.rcsb.org/download/{pdb_id.upper()}.cif\",\n",
" f\"https://files.rcsb.org/download/{pdb_id.upper()}.pdb\",\n",
" f\"https://files.rcsb.org/download/{pdb_id.lower()}.cif\",\n",
" f\"https://files.rcsb.org/download/{pdb_id.lower()}.pdb\"\n",
" ]\n",
"\n",
" for url in sources:\n",
" try:\n",
" response = requests.get(url, timeout=10)\n",
" if response.status_code == 200:\n",
" ext = '.cif' if 'cif' in url else '.pdb'\n",
" file_path = os.path.join(output_dir, f\"{pdb_id.lower()}{ext}\")\n",
" with open(file_path, 'wb') as f:\n",
" f.write(response.content)\n",
" logger.info(f\"Successfully downloaded: {url}\")\n",
" return file_path\n",
" except Exception as e:\n",
" logger.warning(f\"Failed to download from {url}: {e}\")\n",
" continue\n",
"\n",
" raise StructureError(f\"Failed to fetch structure for PDB ID: {pdb_id}\")\n",
" except Exception as e:\n",
" raise StructureError(f\"Error fetching structure: {e}\")\n",
"\n",
"def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
" \"\"\"Convert CIF to PDB format with error handling\"\"\"\n",
" try:\n",
" pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
" parser = MMCIFParser(QUIET=True)\n",
" structure = parser.get_structure('protein', cif_path)\n",
" io = PDBIO()\n",
" io.set_structure(structure)\n",
" io.save(pdb_path)\n",
" return pdb_path\n",
" except Exception as e:\n",
" raise StructureError(f\"Failed to convert CIF to PDB: {e}\")\n",
"\n",
"def find_valid_chain(structure: Structure.Structure) -> Optional[str]:\n",
" \"\"\"Find the first valid protein chain in the structure\"\"\"\n",
" for model in structure:\n",
" for chain in model:\n",
" protein_residues = [res for res in chain if is_aa(res)]\n",
" if len(protein_residues) > 0:\n",
" return chain.id\n",
" return None\n",
"\n",
"def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n",
" \"\"\"Create PDB file with selected chain and prediction scores in B-factor column\"\"\"\n",
" class ResidueSelector(Select):\n",
" def __init__(self, chain_id, selected_residues, scores_dict):\n",
" self.chain_id = chain_id\n",
" self.selected_residues = selected_residues\n",
" self.scores_dict = scores_dict\n",
" \n",
" def accept_chain(self, chain):\n",
" return chain.id == self.chain_id\n",
" \n",
" def accept_residue(self, residue):\n",
" return residue.id[1] in self.selected_residues\n",
"\n",
" def accept_atom(self, atom):\n",
" if atom.parent.id[1] in self.scores_dict:\n",
" atom.bfactor = np.absolute(1-self.scores_dict[atom.parent.id[1]]) * 100\n",
" return True\n",
"\n",
" try:\n",
" parser = PDBParser(QUIET=True)\n",
" structure = parser.get_structure('protein', input_pdb)\n",
" output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb\"\n",
" scores_dict = {resi: score for resi, score in residue_scores}\n",
" \n",
" io = PDBIO()\n",
" selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n",
" io.set_structure(structure[0])\n",
" io.save(output_pdb, selector)\n",
" \n",
" return output_pdb\n",
" except Exception as e:\n",
" raise StructureError(f\"Failed to create chain-specific PDB: {e}\")\n",
"\n",
"def process_pdb(pdb_id_or_file: str, segment: str) -> Tuple[str, str, List[str]]:\n",
" \"\"\"Process PDB/CIF file and generate visualizations and predictions\"\"\"\n",
" try:\n",
" # Handle input\n",
" if pdb_id_or_file.endswith(('.pdb', '.cif')):\n",
" pdb_path = pdb_id_or_file\n",
" pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
" else:\n",
" pdb_id = pdb_id_or_file\n",
" pdb_path = fetch_structure(pdb_id)\n",
"\n",
" if not pdb_path:\n",
" raise StructureError(\"Failed to obtain structure file\")\n",
"\n",
" # Parse structure\n",
" parser = MMCIFParser(QUIET=True) if pdb_path.endswith('.cif') else PDBParser(QUIET=True)\n",
" structure = parser.get_structure('protein', pdb_path)\n",
"\n",
" # Handle chain selection\n",
" if segment == 'auto' or not segment:\n",
" segment = find_valid_chain(structure)\n",
" if not segment:\n",
" raise StructureError(\"No valid protein chains found in structure\")\n",
" \n",
" try:\n",
" chain = structure[0][segment]\n",
" except KeyError:\n",
" valid_chain = find_valid_chain(structure)\n",
" if valid_chain:\n",
" chain = structure[0][valid_chain]\n",
" segment = valid_chain\n",
" logger.info(f\"Using alternative chain {segment}\")\n",
" else:\n",
" raise StructureError(f\"Invalid chain ID '{segment}'. Structure has no valid protein chains.\")\n",
"\n",
" # Process chain\n",
" protein_residues = [res for res in chain if is_aa(res)]\n",
" if not protein_residues:\n",
" raise StructureError(f\"No amino acid residues found in chain {segment}\")\n",
"\n",
" sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
" sequence_id = [res.id[1] for res in protein_residues]\n",
" \n",
" # Generate predictions (currently random)\n",
" scores = np.random.rand(len(sequence))\n",
" normalized_scores = normalize_scores(scores)\n",
" residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
"\n",
" # Generate outputs\n",
" result_str = generate_results_string(pdb_id, segment, protein_residues, normalized_scores, sequence)\n",
" scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n",
" mol_vis = molecule(pdb_path, residue_scores, segment)\n",
" pymol_commands = generate_pymol_commands(pdb_id, segment, residue_scores, pdb_path)\n",
"\n",
" # Save results\n",
" prediction_file = f\"{pdb_id}_binding_site_residues.txt\"\n",
" with open(prediction_file, \"w\") as f:\n",
" f.write(result_str)\n",
"\n",
" return pymol_commands, mol_vis, [prediction_file, scored_pdb]\n",
"\n",
" except StructureError as e:\n",
" return str(e), None, None\n",
" except Exception as e:\n",
" return f\"An unexpected error occurred: {str(e)}\", None, None\n",
"\n",
"def generate_results_string(pdb_id: str, segment: str, protein_residues: list, \n",
" normalized_scores: np.ndarray, sequence: str) -> str:\n",
" \"\"\"Generate formatted results string with predictions\"\"\"\n",
" score_brackets = {\n",
" \"0.0-0.2\": (0.0, 0.2),\n",
" \"0.2-0.4\": (0.2, 0.4),\n",
" \"0.4-0.6\": (0.4, 0.6),\n",
" \"0.6-0.8\": (0.6, 0.8),\n",
" \"0.8-1.0\": (0.8, 1.0)\n",
" }\n",
" \n",
" residues_by_bracket = {bracket: [] for bracket in score_brackets}\n",
" \n",
" # Categorize residues\n",
" for i, score in enumerate(normalized_scores):\n",
" for bracket, (lower, upper) in score_brackets.items():\n",
" if lower <= score < upper:\n",
" residues_by_bracket[bracket].append(protein_residues[i])\n",
" break\n",
" \n",
" # Format results\n",
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
" result_str = f\"\"\"Prediction Results\n",
"========================\n",
"PDB: {pdb_id}\n",
"Chain: {segment}\n",
"Date: {current_time}\n",
"\n",
"Analysis by Score Brackets\n",
"========================\n",
"\"\"\"\n",
" \n",
" for bracket, residues in residues_by_bracket.items():\n",
" if residues: # Only show brackets with residues\n",
" result_str += f\"\\nBracket {bracket}:\\n\"\n",
" result_str += \"ResName ResNum Code Score\\n\"\n",
" result_str += \"-\" * 30 + \"\\n\"\n",
" result_str += \"\\n\".join([\n",
" f\"{res.resname:6} {res.id[1]:6} {sequence[i]:4} {normalized_scores[i]:6.2f}\" \n",
" for i, res in enumerate(protein_residues) if res in residues\n",
" ])\n",
" result_str += \"\\n\"\n",
" \n",
" return result_str\n",
"\n",
"def generate_pymol_commands(pdb_id: str, segment: str, residue_scores: list, pdb_path: str) -> str:\n",
" \"\"\"Generate PyMOL visualization commands\"\"\"\n",
" # Group residues by score ranges\n",
" score_groups = {\n",
" \"very_low\": [], \"low\": [], \"medium\": [], \"high\": [], \"very_high\": []\n",
" }\n",
" \n",
" for resi, score in residue_scores:\n",
" if score <= 0.2:\n",
" score_groups[\"very_low\"].append(str(resi))\n",
" elif score <= 0.4:\n",
" score_groups[\"low\"].append(str(resi))\n",
" elif score <= 0.6:\n",
" score_groups[\"medium\"].append(str(resi))\n",
" elif score <= 0.8:\n",
" score_groups[\"high\"].append(str(resi))\n",
" else:\n",
" score_groups[\"very_high\"].append(str(resi))\n",
"\n",
" current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
" commands = f\"\"\"# PyMOL Script for {pdb_id} Chain {segment}\n",
"# Generated: {current_time}\n",
"\n",
"# Load structure and set initial display\n",
"load {os.path.abspath(pdb_path)}, protein\n",
"bg_color white\n",
"hide everything\n",
"show cartoon, chain {segment}\n",
"color white, chain {segment}\n",
"\n",
"# Create selection groups by score\n",
"\"\"\"\n",
" \n",
" color_scheme = {\n",
" \"very_low\": \"white\",\n",
" \"low\": \"lightorange\",\n",
" \"medium\": \"orange\",\n",
" \"high\": \"orangered\",\n",
" \"very_high\": \"red\"\n",
" }\n",
" \n",
" for group, residues in score_groups.items():\n",
" if residues:\n",
" resi_str = \"+\".join(residues)\n",
" commands += f\"\"\"\n",
"# {group.replace('_', ' ').title()} scoring residues\n",
"select {group}, chain {segment} and resi {resi_str}\n",
"show sticks, {group}\n",
"color {color_scheme[group]}, {group}\"\"\"\n",
" \n",
" commands += \"\"\"\n",
"\n",
"# Center and zoom\n",
"center chain {}\n",
"zoom chain {}\n",
"\"\"\"\n",
"\n",
" return commands\n",
"\n",
"def molecule(input_pdb: str, residue_scores: list = None, segment: str = 'A') -> str:\n",
" \"\"\"Generate interactive 3D molecule visualization\"\"\"\n",
" try:\n",
" mol = read_mol(input_pdb)\n",
" except Exception as e:\n",
" return f'<div class=\"error\">Error loading structure: {str(e)}</div>'\n",
"\n",
" # Prepare residue groups for visualization\n",
" vis_groups = {\n",
" \"class1\": [], # 0.0-0.2\n",
" \"class2\": [], # 0.2-0.4\n",
" \"class3\": [], # 0.4-0.6\n",
" \"class4\": [], # 0.6-0.8\n",
" \"class5\": [] # 0.8-1.0\n",
" }\n",
"\n",
" if residue_scores:\n",
" for resi, score in residue_scores:\n",
" if score <= 0.2:\n",
" vis_groups[\"class1\"].append(resi)\n",
" elif score <= 0.4:\n",
" vis_groups[\"class2\"].append(resi)\n",
" elif score <= 0.6:\n",
" vis_groups[\"class3\"].append(resi)\n",
" elif score <= 0.8:\n",
" vis_groups[\"class4\"].append(resi)\n",
" else:\n",
" vis_groups[\"class5\"].append(resi)\n",
"\n",
" # Generate visualization script\n",
" vis_script = f\"\"\"\n",
" // Base model setup\n",
" let chainModel = viewer.addModel(pdb, \"pdb\");\n",
" chainModel.setStyle({{}}, {{}});\n",
" chainModel.setStyle(\n",
" {{\"chain\": \"{segment}\"}}, \n",
" {{\"cartoon\": {{\"color\": \"white\"}}}}\n",
" );\n",
" \"\"\"\n",
"\n",
" # Color schemes for different score ranges\n",
" color_schemes = {\n",
" \"class1\": {\"color\": \"0xFFFFFF\", \"opacity\": 0.5}, # White\n",
" \"class2\": {\"color\": \"0xFFD580\", \"opacity\": 0.7}, # Light orange\n",
" \"class3\": {\"color\": \"0xFFA500\", \"opacity\": 1.0}, # Orange\n",
" \"class4\": {\"color\": \"0xFF4500\", \"opacity\": 1.0}, # Orange red\n",
" \"class5\": {\"color\": \"0xFF0000\", \"opacity\": 1.0} # Red\n",
" }\n",
"\n",
" # Add visualization for each group\n",
" for group, residues in vis_groups.items():\n",
" if residues:\n",
" color_scheme = color_schemes[group]\n",
" vis_script += f\"\"\"\n",
" let {group}Model = viewer.addModel(pdb, \"pdb\");\n",
" {group}Model.setStyle({{}}, {{}});\n",
" {group}Model.setStyle(\n",
" {{\"chain\": \"{segment}\", \"resi\": [{\", \".join(map(str, residues))}]}},\n",
" {{\"stick\": {{\"color\": \"{color_scheme[\"color\"]}\", \"opacity\": {color_scheme[\"opacity\"]}}}}}\n",
" );\n",
" \"\"\"\n",
"\n",
" # Generate full HTML with enhanced controls and information\n",
" html_content = f\"\"\"\n",
" <!DOCTYPE html>\n",
" <html>\n",
" <head> \n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
" <style>\n",
" .mol-container {{\n",
" width: 100%;\n",
" height: 700px;\n",
" position: relative;\n",
" }}\n",
" .controls {{\n",
" position: absolute;\n",
" top: 10px;\n",
" left: 10px;\n",
" background: rgba(255, 255, 255, 0.8);\n",
" padding: 10px;\n",
" border-radius: 5px;\n",
" z-index: 1000;\n",
" }}\n",
" .legend {{\n",
" position: absolute;\n",
" bottom: 10px;\n",
" right: 10px;\n",
" background: rgba(255, 255, 255, 0.8);\n",
" padding: 10px;\n",
" border-radius: 5px;\n",
" z-index: 1000;\n",
" }}\n",
" .error {{\n",
" color: red;\n",
" padding: 20px;\n",
" text-align: center;\n",
" font-weight: bold;\n",
" }}\n",
" </style>\n",
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
" </head>\n",
" <body>\n",
" <div id=\"container\" class=\"mol-container\">\n",
" <div class=\"controls\">\n",
" <button onclick=\"toggleStyle('cartoon')\">Toggle Cartoon</button>\n",
" <button onclick=\"toggleStyle('stick')\">Toggle Sticks</button>\n",
" <button onclick=\"resetView()\">Reset View</button>\n",
" <button onclick=\"toggleSpin()\">Toggle Spin</button>\n",
" </div>\n",
" <div class=\"legend\">\n",
" <div><span style=\"color: #FF0000\">■</span> Very High (0.8-1.0)</div>\n",
" <div><span style=\"color: #FF4500\">■</span> High (0.6-0.8)</div>\n",
" <div><span style=\"color: #FFA500\">■</span> Medium (0.4-0.6)</div>\n",
" <div><span style=\"color: #FFD580\">■</span> Low (0.2-0.4)</div>\n",
" <div><span style=\"color: #FFFFFF\">■</span> Very Low (0.0-0.2)</div>\n",
" </div>\n",
" </div>\n",
" <script>\n",
" let pdb = `{mol}`;\n",
" let viewer;\n",
" let isSpinning = false;\n",
"\n",
" $(document).ready(function () {{\n",
" let element = $(\"#container\");\n",
" let config = {{ backgroundColor: \"white\" }};\n",
" viewer = $3Dmol.createViewer(element, config);\n",
" \n",
" {vis_script}\n",
" \n",
" // Enhanced hover functionality\n",
" viewer.setHoverable(\n",
" {{}}, \n",
" true, \n",
" function(atom, viewer, event, container) {{\n",
" if (!atom.label) {{\n",
" atom.label = viewer.addLabel(\n",
" `${{atom.resn}}:${{atom.resi}}:${{atom.atom}}`, \n",
" {{\n",
" position: atom, \n",
" backgroundColor: 'mintcream', \n",
" fontColor: 'black',\n",
" fontSize: 18,\n",
" padding: 4\n",
" }}\n",
" );\n",
" }}\n",
" }},\n",
" function(atom, viewer) {{\n",
" if (atom.label) {{\n",
" viewer.removeLabel(atom.label);\n",
" delete atom.label;\n",
" }}\n",
" }}\n",
" );\n",
" \n",
" viewer.zoomTo();\n",
" viewer.render();\n",
" viewer.zoom(0.8, 2000);\n",
" }});\n",
"\n",
" function toggleStyle(style) {{\n",
" let elements = viewer.selectedAtoms({{}});\n",
" let currentStyle = elements.style[style];\n",
" elements.style[style] = !currentStyle;\n",
" viewer.render();\n",
" }}\n",
"\n",
" function resetView() {{\n",
" viewer.zoomTo();\n",
" viewer.render();\n",
" }}\n",
"\n",
" function toggleSpin() {{\n",
" isSpinning = !isSpinning;\n",
" viewer.spin(isSpinning);\n",
" }}\n",
" </script>\n",
" </body>\n",
" </html>\n",
" \"\"\"\n",
" \n",
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
"\n",
"# Gradio UI\n",
"def create_ui():\n",
" with gr.Blocks(title=\"Protein Binding Site Prediction\", theme=gr.themes.Base()) as demo:\n",
" gr.Markdown(\"\"\"\n",
" # Protein Binding Site Prediction\n",
" \n",
" This tool helps you visualize and analyze potential binding sites in protein structures.\n",
" You can either:\n",
" 1. Enter a PDB ID (e.g., \"4BDU\")\n",
" 2. Upload your own PDB/CIF file\n",
" \n",
" The tool will analyze the structure and show predictions using a color gradient from white (low probability) to red (high probability).\n",
" \"\"\")\n",
" \n",
" with gr.Row():\n",
" with gr.Column(scale=2):\n",
" # Input components\n",
" mode = gr.Radio(\n",
" choices=[\"PDB ID\", \"Upload File\"],\n",
" value=\"PDB ID\",\n",
" label=\"Input Mode\",\n",
" info=\"Choose whether to input a PDB ID or upload a PDB/CIF file\"\n",
" )\n",
" \n",
" with gr.Group():\n",
" pdb_input = gr.Textbox(\n",
" value=\"4BDU\",\n",
" label=\"PDB ID\",\n",
" placeholder=\"Enter PDB ID (e.g., 4BDU)\",\n",
" info=\"Enter a valid PDB ID from the Protein Data Bank\"\n",
" )\n",
" pdb_file = gr.File(\n",
" label=\"Upload PDB/CIF File\",\n",
" file_types=[\".pdb\", \".cif\"],\n",
" visible=False\n",
" )\n",
" \n",
" segment_input = gr.Textbox(\n",
" value=\"A\",\n",
" label=\"Chain ID\",\n",
" placeholder=\"Enter Chain ID or leave empty for automatic selection\",\n",
" info=\"Specify which protein chain to analyze, or leave empty for automatic selection\"\n",
" )\n",
"\n",
" with gr.Column(scale=1):\n",
" visualize_btn = gr.Button(\"Visualize Structure\", variant=\"primary\")\n",
" prediction_btn = gr.Button(\"Predict Binding Site\", variant=\"secondary\")\n",
" \n",
" gr.Markdown(\"\"\"\n",
" ### Color Legend\n",
" - White: Very Low (0.0-0.2)\n",
" - Light Orange: Low (0.2-0.4)\n",
" - Orange: Medium (0.4-0.6)\n",
" - Orange Red: High (0.6-0.8)\n",
" - Red: Very High (0.8-1.0)\n",
" \"\"\")\n",
"\n",
" with gr.Tab(\"3D Visualization\"):\n",
" molecule_output = gr.HTML(label=\"Interactive 3D Structure\")\n",
" \n",
" with gr.Tab(\"Analysis Results\"):\n",
" predictions_output = gr.Textbox(\n",
" label=\"PyMOL Visualization Commands\",\n",
" info=\"Copy these commands into PyMOL to recreate the visualization\"\n",
" )\n",
" download_output = gr.File(\n",
" label=\"Download Results\",\n",
" file_count=\"multiple\"\n",
" )\n",
"\n",
" # Error message container\n",
" error_output = gr.Markdown(visible=False)\n",
"\n",
" # Mode change handler\n",
" def toggle_mode(selected_mode):\n",
" return {\n",
" pdb_input: gr.update(visible=selected_mode == \"PDB ID\"),\n",
" pdb_file: gr.update(visible=selected_mode == \"Upload File\")\n",
" }\n",
"\n",
" mode.change(\n",
" toggle_mode,\n",
" inputs=[mode],\n",
" outputs=[pdb_input, pdb_file]\n",
" )\n",
"\n",
" # Process handlers\n",
" def handle_visualization(mode, pdb_id, pdb_file):\n",
" try:\n",
" result = fetch_interface(mode, pdb_id, pdb_file)\n",
" if isinstance(result, str) and result.startswith(\"Error\"):\n",
" return None, gr.update(visible=True, value=f\"```\\n{result}\\n```\")\n",
" return result, gr.update(visible=False)\n",
" except Exception as e:\n",
" return None, gr.update(visible=True, value=f\"```\\nError: {str(e)}\\n```\")\n",
"\n",
" def handle_prediction(mode, pdb_id, pdb_file, chain_id):\n",
" try:\n",
" predictions, vis, downloads = process_interface(mode, pdb_id, pdb_file, chain_id)\n",
" if isinstance(predictions, str) and \"Error\" in predictions:\n",
" return (\n",
" None,\n",
" None,\n",
" None,\n",
" gr.update(visible=True, value=f\"```\\n{predictions}\\n```\")\n",
" )\n",
" return (\n",
" predictions,\n",
" vis,\n",
" downloads,\n",
" gr.update(visible=False)\n",
" )\n",
" except Exception as e:\n",
" error_msg = f\"\"\"Error processing structure:\n",
"```\n",
"{str(e)}\n",
"\n",
"Troubleshooting tips:\n",
"1. Check if the PDB ID is valid\n",
"2. Ensure the Chain ID exists in the structure\n",
"3. Try leaving Chain ID empty for automatic selection\n",
"4. If uploading a file, ensure it's a valid PDB/CIF format\n",
"```\"\"\"\n",
" return None, None, None, gr.update(visible=True, value=error_msg)\n",
"\n",
" def fetch_interface(mode, pdb_id, pdb_file):\n",
" try:\n",
" if mode == \"PDB ID\":\n",
" if not pdb_id or len(pdb_id.strip()) != 4:\n",
" raise ValueError(\"Please enter a valid 4-character PDB ID\")\n",
" return fetch_pdb(pdb_id.strip())\n",
" elif mode == \"Upload File\":\n",
" if not pdb_file:\n",
" raise ValueError(\"Please upload a PDB or CIF file\")\n",
" _, ext = os.path.splitext(pdb_file.name)\n",
" if ext.lower() not in ['.pdb', '.cif']:\n",
" raise ValueError(\"Only .pdb and .cif files are supported\")\n",
" \n",
" # Create temp directory for file handling\n",
" with tempfile.TemporaryDirectory() as temp_dir:\n",
" temp_path = os.path.join(temp_dir, os.path.basename(pdb_file.name))\n",
" with open(temp_path, 'wb') as f:\n",
" f.write(pdb_file.read())\n",
" \n",
" if ext.lower() == '.cif':\n",
" return convert_cif_to_pdb(temp_path)\n",
" return temp_path\n",
" else:\n",
" raise ValueError(\"Invalid mode selected\")\n",
" except Exception as e:\n",
" return f\"Error: {str(e)}\"\n",
"\n",
" # Connect event handlers\n",
" visualize_btn.click(\n",
" handle_visualization,\n",
" inputs=[mode, pdb_input, pdb_file],\n",
" outputs=[molecule_output, error_output]\n",
" )\n",
"\n",
" prediction_btn.click(\n",
" handle_prediction,\n",
" inputs=[mode, pdb_input, pdb_file, segment_input],\n",
" outputs=[predictions_output, molecule_output, download_output, error_output]\n",
" )\n",
"\n",
" # Add examples\n",
" gr.Examples(\n",
" examples=[\n",
" [\"PDB ID\", \"7RPZ\", None, \"A\"],\n",
" [\"PDB ID\", \"2IWI\", None, \"B\"],\n",
" [\"PDB ID\", \"2F6V\", None, \"A\"]\n",
" ],\n",
" inputs=[mode, pdb_input, pdb_file, segment_input],\n",
" outputs=[predictions_output, molecule_output, download_output, error_output],\n",
" fn=handle_prediction,\n",
" cache_examples=True\n",
" )\n",
"\n",
" # Add documentation\n",
" gr.Markdown(\"\"\"\n",
" ## Usage Instructions\n",
" \n",
" 1. **Input Structure:**\n",
" - Enter a PDB ID (e.g., \"4BDU\") or upload your own structure file\n",
" - The tool supports both PDB (.pdb) and mmCIF (.cif) formats\n",
" \n",
" 2. **Select Chain:**\n",
" - Enter a specific chain ID (e.g., \"A\")\n",
" - Leave empty for automatic selection of the first valid protein chain\n",
" \n",
" 3. **Analyze:**\n",
" - Click \"Visualize Structure\" to view the 3D structure\n",
" - Click \"Predict Binding Site\" to perform binding site analysis\n",
" \n",
" 4. **Results:**\n",
" - Interactive 3D visualization with color-coded predictions\n",
" - PyMOL commands for external visualization\n",
" - Downloadable results files\n",
" \n",
" ## Troubleshooting\n",
" \n",
" If you encounter issues:\n",
" 1. Ensure your PDB ID is valid and exists in the PDB database\n",
" 2. Check that your uploaded file is a valid PDB/CIF format\n",
" 3. Try automatic chain selection if your specified chain isn't found\n",
" 4. Clear your browser cache if visualizations don't load\n",
" \"\"\")\n",
"\n",
" return demo\n",
"\n",
"if __name__ == \"__main__\":\n",
" demo = create_ui()\n",
" demo.launch(share=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9125d1c4-e2ae-4e40-ba36-7ae944512b8e",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "85c0728a-a15b-4118-b920-5f55a2f5f79a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (LLM)",
"language": "python",
"name": "llm"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|