test_webpage / app.py.backup
ThorbenF's picture
Update
b081fc7
raw
history blame
19.6 kB
from datetime import datetime
import gradio as gr
import requests
from Bio.PDB import PDBParser, MMCIFParser, PDBIO, Select
from Bio.PDB.Polypeptide import is_aa
from Bio.SeqUtils import seq1
from typing import Optional, Tuple
import numpy as np
import os
from gradio_molecule3d import Molecule3D
from model_loader import load_model
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import re
import pandas as pd
import copy
import transformers
from transformers import AutoTokenizer, DataCollatorForTokenClassification
from datasets import Dataset
from scipy.special import expit
# Load model and move to device
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
max_length = 1500
model, tokenizer = load_model(checkpoint, max_length)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.eval()
def normalize_scores(scores):
min_score = np.min(scores)
max_score = np.max(scores)
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
def read_mol(pdb_path):
"""Read PDB file and return its content as a string"""
with open(pdb_path, 'r') as f:
return f.read()
def fetch_structure(pdb_id: str, output_dir: str = ".") -> Optional[str]:
"""
Fetch the structure file for a given PDB ID. Prioritizes CIF files.
If a structure file already exists locally, it uses that.
"""
file_path = download_structure(pdb_id, output_dir)
if file_path:
return file_path
else:
return None
def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:
"""
Attempt to download the structure file in CIF or PDB format.
Returns the path to the downloaded file, or None if download fails.
"""
for ext in ['.cif', '.pdb']:
file_path = os.path.join(output_dir, f"{pdb_id}{ext}")
if os.path.exists(file_path):
return file_path
url = f"https://files.rcsb.org/download/{pdb_id}{ext}"
try:
response = requests.get(url, timeout=10)
if response.status_code == 200:
with open(file_path, 'wb') as f:
f.write(response.content)
return file_path
except Exception as e:
print(f"Download error for {pdb_id}{ext}: {e}")
return None
def convert_cif_to_pdb(cif_path: str, output_dir: str = ".") -> str:
"""
Convert a CIF file to PDB format using BioPython and return the PDB file path.
"""
pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))
parser = MMCIFParser(QUIET=True)
structure = parser.get_structure('protein', cif_path)
io = PDBIO()
io.set_structure(structure)
io.save(pdb_path)
return pdb_path
def fetch_pdb(pdb_id):
pdb_path = fetch_structure(pdb_id)
if not pdb_path:
return None
_, ext = os.path.splitext(pdb_path)
if ext == '.cif':
pdb_path = convert_cif_to_pdb(pdb_path)
return pdb_path
def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:
"""
Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores
"""
# Read the original PDB file
parser = PDBParser(QUIET=True)
structure = parser.get_structure('protein', input_pdb)
# Prepare a new structure with only the specified chain and selected residues
output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb"
# Create scores dictionary for easy lookup
scores_dict = {resi: score for resi, score in residue_scores}
# Create a custom Select class
class ResidueSelector(Select):
def __init__(self, chain_id, selected_residues, scores_dict):
self.chain_id = chain_id
self.selected_residues = selected_residues
self.scores_dict = scores_dict
def accept_chain(self, chain):
return chain.id == self.chain_id
def accept_residue(self, residue):
return residue.id[1] in self.selected_residues
def accept_atom(self, atom):
if atom.parent.id[1] in self.scores_dict:
atom.bfactor = np.absolute(1-self.scores_dict[atom.parent.id[1]]) * 100
return True
# Prepare output PDB with selected chain and residues, modified B-factors
io = PDBIO()
selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)
io.set_structure(structure[0])
io.save(output_pdb, selector)
return output_pdb
def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):
"""
Calculate the geometric center of high-scoring residues
"""
parser = PDBParser(QUIET=True)
structure = parser.get_structure('protein', pdb_path)
# Collect coordinates of CA atoms from high-scoring residues
coords = []
for model in structure:
for chain in model:
if chain.id == chain_id:
for residue in chain:
if residue.id[1] in high_score_residues:
if 'CA' in residue: # Use alpha carbon as representative
ca_atom = residue['CA']
coords.append(ca_atom.coord)
# Calculate geometric center
if coords:
center = np.mean(coords, axis=0)
return center
return None
def process_pdb(pdb_id_or_file, segment):
# Determine if input is a PDB ID or file path
if pdb_id_or_file.endswith('.pdb'):
pdb_path = pdb_id_or_file
pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]
else:
pdb_id = pdb_id_or_file
pdb_path = fetch_pdb(pdb_id)
if not pdb_path:
return "Failed to fetch PDB file", None, None
# Determine the file format and choose the appropriate parser
_, ext = os.path.splitext(pdb_path)
parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)
try:
# Parse the structure file
structure = parser.get_structure('protein', pdb_path)
except Exception as e:
return f"Error parsing structure file: {e}", None, None
# Extract the specified chain
try:
chain = structure[0][segment]
except KeyError:
return "Invalid Chain ID", None, None
protein_residues = [res for res in chain if is_aa(res)]
sequence = "".join(seq1(res.resname) for res in protein_residues)
sequence_id = [res.id[1] for res in protein_residues]
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
with torch.no_grad():
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
# Calculate scores and normalize them
scores = expit(outputs[:, 1] - outputs[:, 0])
normalized_scores = normalize_scores(scores)
# Zip residues with scores to track the residue ID and score
residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]
# Define the score brackets
score_brackets = {
"0.0-0.2": (0.0, 0.2),
"0.2-0.4": (0.2, 0.4),
"0.4-0.6": (0.4, 0.6),
"0.6-0.8": (0.6, 0.8),
"0.8-1.0": (0.8, 1.0)
}
# Initialize a dictionary to store residues by bracket
residues_by_bracket = {bracket: [] for bracket in score_brackets}
# Categorize residues into brackets
for resi, score in residue_scores:
for bracket, (lower, upper) in score_brackets.items():
if lower <= score < upper:
residues_by_bracket[bracket].append(resi)
break
# Preparing the result string
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
result_str += "Residues by Score Brackets:\n\n"
# Add residues for each bracket
for bracket, residues in residues_by_bracket.items():
result_str += f"Bracket {bracket}:\n"
result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n"
result_str += "\n".join([
f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
for i, res in enumerate(protein_residues) if res.id[1] in residues
])
result_str += "\n\n"
# Create chain-specific PDB with scores in B-factor
scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)
# Molecule visualization with updated script with color mapping
mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)
# Improved PyMOL command suggestions
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
pymol_commands = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
pymol_commands += f"""
# PyMOL Visualization Commands
load {os.path.abspath(pdb_path)}, protein
hide everything, all
show cartoon, chain {segment}
color white, chain {segment}
"""
# Define colors for each score bracket
bracket_colors = {
"0.0-0.2": "white",
"0.2-0.4": "lightorange",
"0.4-0.6": "orange",
"0.6-0.8": "orangered",
"0.8-1.0": "red"
}
# Add PyMOL commands for each score bracket
for bracket, residues in residues_by_bracket.items():
if residues: # Only add commands if there are residues in this bracket
color = bracket_colors[bracket]
resi_list = '+'.join(map(str, residues))
pymol_commands += f"""
select bracket_{bracket.replace('.', '').replace('-', '_')}, resi {resi_list} and chain {segment}
show sticks, bracket_{bracket.replace('.', '').replace('-', '_')}
color {color}, bracket_{bracket.replace('.', '').replace('-', '_')}
"""
# Create prediction and scored PDB files
prediction_file = f"{pdb_id}_binding_site_residues.txt"
with open(prediction_file, "w") as f:
f.write(result_str)
return pymol_commands, mol_vis, [prediction_file,scored_pdb]
def molecule(input_pdb, residue_scores=None, segment='A'):
# More granular scoring for visualization
mol = read_mol(input_pdb) # Read PDB file content
# Prepare high-scoring residues script if scores are provided
high_score_script = ""
if residue_scores is not None:
# Filter residues based on their scores
class1_score_residues = [resi for resi, score in residue_scores if 0.0 < score <= 0.2]
class2_score_residues = [resi for resi, score in residue_scores if 0.2 < score <= 0.4]
class3_score_residues = [resi for resi, score in residue_scores if 0.4 < score <= 0.6]
class4_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.8]
class5_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 1.0]
high_score_script = """
// Load the original model and apply white cartoon style
let chainModel = viewer.addModel(pdb, "pdb");
chainModel.setStyle({}, {});
chainModel.setStyle(
{"chain": "%s"},
{"cartoon": {"color": "white"}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class1Model = viewer.addModel(pdb, "pdb");
class1Model.setStyle({}, {});
class1Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFFFFFF", "opacity": 0.5}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class2Model = viewer.addModel(pdb, "pdb");
class2Model.setStyle({}, {});
class2Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFFD580", "opacity": 0.7}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class3Model = viewer.addModel(pdb, "pdb");
class3Model.setStyle({}, {});
class3Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFFA500", "opacity": 1}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class4Model = viewer.addModel(pdb, "pdb");
class4Model.setStyle({}, {});
class4Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFF4500", "opacity": 1}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class5Model = viewer.addModel(pdb, "pdb");
class5Model.setStyle({}, {});
class5Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFF0000", "alpha": 1}}
);
""" % (
segment,
segment,
", ".join(str(resi) for resi in class1_score_residues),
segment,
", ".join(str(resi) for resi in class2_score_residues),
segment,
", ".join(str(resi) for resi in class3_score_residues),
segment,
", ".join(str(resi) for resi in class4_score_residues),
segment,
", ".join(str(resi) for resi in class5_score_residues)
)
# Generate the full HTML content
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<style>
.mol-container {{
width: 100%;
height: 700px;
position: relative;
}}
</style>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
</head>
<body>
<div id="container" class="mol-container"></div>
<script>
let pdb = `{mol}`; // Use template literal to properly escape PDB content
$(document).ready(function () {{
let element = $("#container");
let config = {{ backgroundColor: "white" }};
let viewer = $3Dmol.createViewer(element, config);
{high_score_script}
// Add hover functionality
viewer.setHoverable(
{{}},
true,
function(atom, viewer, event, container) {{
if (!atom.label) {{
atom.label = viewer.addLabel(
atom.resn + ":" +atom.resi + ":" + atom.atom,
{{
position: atom,
backgroundColor: 'mintcream',
fontColor: 'black',
fontSize: 18,
padding: 4
}}
);
}}
}},
function(atom, viewer) {{
if (atom.label) {{
viewer.removeLabel(atom.label);
delete atom.label;
}}
}}
);
viewer.zoomTo();
viewer.render();
viewer.zoom(0.8, 2000);
}});
</script>
</body>
</html>
"""
# Return the HTML content within an iframe safely encoded for special characters
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), "&quot;").replace(chr(39), "&#39;")}"></iframe>'
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Protein Binding Site Prediction")
# Mode selection
mode = gr.Radio(
choices=["PDB ID", "Upload File"],
value="PDB ID",
label="Input Mode",
info="Choose whether to input a PDB ID or upload a PDB/CIF file."
)
# Input components based on mode
pdb_input = gr.Textbox(value="4BDU", label="PDB ID", placeholder="Enter PDB ID here...")
pdb_file = gr.File(label="Upload PDB/CIF File", visible=False)
visualize_btn = gr.Button("Visualize Structure")
molecule_output2 = Molecule3D(label="Protein Structure", reps=[
{
"model": 0,
"style": "cartoon",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False,
}
])
with gr.Row():
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
prediction_btn = gr.Button("Predict Binding Site")
molecule_output = gr.HTML(label="Protein Structure")
explanation_vis = gr.Markdown("""
Score dependent colorcoding:
- 0.0-0.2: white
- 0.2–0.4: light orange
- 0.4–0.6: orange
- 0.6–0.8: orangered
- 0.8–1.0: red
""")
predictions_output = gr.Textbox(label="Visualize Prediction with PyMol")
gr.Markdown("### Download:\n- List of predicted binding site residues\n- PDB with score in beta factor column")
download_output = gr.File(label="Download Files", file_count="multiple")
def process_interface(mode, pdb_id, pdb_file, chain_id):
if mode == "PDB ID":
return process_pdb(pdb_id, chain_id)
elif mode == "Upload File":
_, ext = os.path.splitext(pdb_file.name)
file_path = os.path.join('./', f"{_}{ext}")
if ext == '.cif':
pdb_path = convert_cif_to_pdb(file_path)
else:
pdb_path= file_path
return process_pdb(pdb_path, chain_id)
else:
return "Error: Invalid mode selected", None, None
def fetch_interface(mode, pdb_id, pdb_file):
if mode == "PDB ID":
return fetch_pdb(pdb_id)
elif mode == "Upload File":
_, ext = os.path.splitext(pdb_file.name)
file_path = os.path.join('./', f"{_}{ext}")
#print(ext)
if ext == '.cif':
pdb_path = convert_cif_to_pdb(file_path)
else:
pdb_path= file_path
#print(pdb_path)
return pdb_path
else:
return "Error: Invalid mode selected"
def toggle_mode(selected_mode):
if selected_mode == "PDB ID":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
mode.change(
toggle_mode,
inputs=[mode],
outputs=[pdb_input, pdb_file]
)
prediction_btn.click(
process_interface,
inputs=[mode, pdb_input, pdb_file, segment_input],
outputs=[predictions_output, molecule_output, download_output]
)
visualize_btn.click(
fetch_interface,
inputs=[mode, pdb_input, pdb_file],
outputs=molecule_output2
)
gr.Markdown("## Examples")
gr.Examples(
examples=[
["7RPZ", "A"],
["2IWI", "B"],
["2F6V", "A"]
],
inputs=[pdb_input, segment_input],
outputs=[predictions_output, molecule_output, download_output]
)
demo.launch(share=True)