Spaces:
Sleeping
Sleeping
from datetime import datetime | |
import gradio as gr | |
import requests | |
from Bio.PDB import PDBParser, MMCIFParser, PDBIO, Select | |
from Bio.PDB.Polypeptide import is_aa | |
from Bio.SeqUtils import seq1 | |
from typing import Optional, Tuple | |
import numpy as np | |
import os | |
from gradio_molecule3d import Molecule3D | |
from model_loader import load_model | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.data import DataLoader | |
import re | |
import pandas as pd | |
import copy | |
import transformers | |
from transformers import AutoTokenizer, DataCollatorForTokenClassification | |
from datasets import Dataset | |
from scipy.special import expit | |
# Load model and move to device | |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50' | |
max_length = 1500 | |
model, tokenizer = load_model(checkpoint, max_length) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device) | |
model.eval() | |
def normalize_scores(scores): | |
min_score = np.min(scores) | |
max_score = np.max(scores) | |
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores | |
def read_mol(pdb_path): | |
"""Read PDB file and return its content as a string""" | |
with open(pdb_path, 'r') as f: | |
return f.read() | |
def fetch_structure(pdb_id: str, output_dir: str = ".") -> Optional[str]: | |
""" | |
Fetch the structure file for a given PDB ID. Prioritizes CIF files. | |
If a structure file already exists locally, it uses that. | |
""" | |
file_path = download_structure(pdb_id, output_dir) | |
if file_path: | |
return file_path | |
else: | |
return None | |
def download_structure(pdb_id: str, output_dir: str) -> Optional[str]: | |
""" | |
Attempt to download the structure file in CIF or PDB format. | |
Returns the path to the downloaded file, or None if download fails. | |
""" | |
for ext in ['.cif', '.pdb']: | |
file_path = os.path.join(output_dir, f"{pdb_id}{ext}") | |
if os.path.exists(file_path): | |
return file_path | |
url = f"https://files.rcsb.org/download/{pdb_id}{ext}" | |
try: | |
response = requests.get(url, timeout=10) | |
if response.status_code == 200: | |
with open(file_path, 'wb') as f: | |
f.write(response.content) | |
return file_path | |
except Exception as e: | |
print(f"Download error for {pdb_id}{ext}: {e}") | |
return None | |
def convert_cif_to_pdb(cif_path: str, output_dir: str = ".") -> str: | |
""" | |
Convert a CIF file to PDB format using BioPython and return the PDB file path. | |
""" | |
pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb')) | |
parser = MMCIFParser(QUIET=True) | |
structure = parser.get_structure('protein', cif_path) | |
io = PDBIO() | |
io.set_structure(structure) | |
io.save(pdb_path) | |
return pdb_path | |
def fetch_pdb(pdb_id): | |
pdb_path = fetch_structure(pdb_id) | |
if not pdb_path: | |
return None | |
_, ext = os.path.splitext(pdb_path) | |
if ext == '.cif': | |
pdb_path = convert_cif_to_pdb(pdb_path) | |
return pdb_path | |
def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str: | |
""" | |
Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores | |
""" | |
# Read the original PDB file | |
parser = PDBParser(QUIET=True) | |
structure = parser.get_structure('protein', input_pdb) | |
# Prepare a new structure with only the specified chain and selected residues | |
output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb" | |
# Create scores dictionary for easy lookup | |
scores_dict = {resi: score for resi, score in residue_scores} | |
# Create a custom Select class | |
class ResidueSelector(Select): | |
def __init__(self, chain_id, selected_residues, scores_dict): | |
self.chain_id = chain_id | |
self.selected_residues = selected_residues | |
self.scores_dict = scores_dict | |
def accept_chain(self, chain): | |
return chain.id == self.chain_id | |
def accept_residue(self, residue): | |
return residue.id[1] in self.selected_residues | |
def accept_atom(self, atom): | |
if atom.parent.id[1] in self.scores_dict: | |
atom.bfactor = np.absolute(1-self.scores_dict[atom.parent.id[1]]) * 100 | |
return True | |
# Prepare output PDB with selected chain and residues, modified B-factors | |
io = PDBIO() | |
selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict) | |
io.set_structure(structure[0]) | |
io.save(output_pdb, selector) | |
return output_pdb | |
def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str): | |
""" | |
Calculate the geometric center of high-scoring residues | |
""" | |
parser = PDBParser(QUIET=True) | |
structure = parser.get_structure('protein', pdb_path) | |
# Collect coordinates of CA atoms from high-scoring residues | |
coords = [] | |
for model in structure: | |
for chain in model: | |
if chain.id == chain_id: | |
for residue in chain: | |
if residue.id[1] in high_score_residues: | |
if 'CA' in residue: # Use alpha carbon as representative | |
ca_atom = residue['CA'] | |
coords.append(ca_atom.coord) | |
# Calculate geometric center | |
if coords: | |
center = np.mean(coords, axis=0) | |
return center | |
return None | |
def process_pdb(pdb_id_or_file, segment): | |
# Determine if input is a PDB ID or file path | |
if pdb_id_or_file.endswith('.pdb'): | |
pdb_path = pdb_id_or_file | |
pdb_id = os.path.splitext(os.path.basename(pdb_path))[0] | |
else: | |
pdb_id = pdb_id_or_file | |
pdb_path = fetch_pdb(pdb_id) | |
if not pdb_path: | |
return "Failed to fetch PDB file", None, None | |
# Determine the file format and choose the appropriate parser | |
_, ext = os.path.splitext(pdb_path) | |
parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True) | |
try: | |
# Parse the structure file | |
structure = parser.get_structure('protein', pdb_path) | |
except Exception as e: | |
return f"Error parsing structure file: {e}", None, None | |
# Extract the specified chain | |
try: | |
chain = structure[0][segment] | |
except KeyError: | |
return "Invalid Chain ID", None, None | |
protein_residues = [res for res in chain if is_aa(res)] | |
sequence = "".join(seq1(res.resname) for res in protein_residues) | |
sequence_id = [res.id[1] for res in protein_residues] | |
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device) | |
with torch.no_grad(): | |
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze() | |
# Calculate scores and normalize them | |
scores = expit(outputs[:, 1] - outputs[:, 0]) | |
normalized_scores = normalize_scores(scores) | |
# Zip residues with scores to track the residue ID and score | |
residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)] | |
# Define the score brackets | |
score_brackets = { | |
"0.0-0.2": (0.0, 0.2), | |
"0.2-0.4": (0.2, 0.4), | |
"0.4-0.6": (0.4, 0.6), | |
"0.6-0.8": (0.6, 0.8), | |
"0.8-1.0": (0.8, 1.0) | |
} | |
# Initialize a dictionary to store residues by bracket | |
residues_by_bracket = {bracket: [] for bracket in score_brackets} | |
# Categorize residues into brackets | |
for resi, score in residue_scores: | |
for bracket, (lower, upper) in score_brackets.items(): | |
if lower <= score < upper: | |
residues_by_bracket[bracket].append(resi) | |
break | |
# Preparing the result string | |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n" | |
result_str += "Residues by Score Brackets:\n\n" | |
# Add residues for each bracket | |
for bracket, residues in residues_by_bracket.items(): | |
result_str += f"Bracket {bracket}:\n" | |
result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n" | |
result_str += "\n".join([ | |
f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}" | |
for i, res in enumerate(protein_residues) if res.id[1] in residues | |
]) | |
result_str += "\n\n" | |
# Create chain-specific PDB with scores in B-factor | |
scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues) | |
# Molecule visualization with updated script with color mapping | |
mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map) | |
# Improved PyMOL command suggestions | |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
pymol_commands = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n" | |
pymol_commands += f""" | |
# PyMOL Visualization Commands | |
load {os.path.abspath(pdb_path)}, protein | |
hide everything, all | |
show cartoon, chain {segment} | |
color white, chain {segment} | |
""" | |
# Define colors for each score bracket | |
bracket_colors = { | |
"0.0-0.2": "white", | |
"0.2-0.4": "lightorange", | |
"0.4-0.6": "orange", | |
"0.6-0.8": "orangered", | |
"0.8-1.0": "red" | |
} | |
# Add PyMOL commands for each score bracket | |
for bracket, residues in residues_by_bracket.items(): | |
if residues: # Only add commands if there are residues in this bracket | |
color = bracket_colors[bracket] | |
resi_list = '+'.join(map(str, residues)) | |
pymol_commands += f""" | |
select bracket_{bracket.replace('.', '').replace('-', '_')}, resi {resi_list} and chain {segment} | |
show sticks, bracket_{bracket.replace('.', '').replace('-', '_')} | |
color {color}, bracket_{bracket.replace('.', '').replace('-', '_')} | |
""" | |
# Create prediction and scored PDB files | |
prediction_file = f"{pdb_id}_binding_site_residues.txt" | |
with open(prediction_file, "w") as f: | |
f.write(result_str) | |
return pymol_commands, mol_vis, [prediction_file,scored_pdb] | |
def molecule(input_pdb, residue_scores=None, segment='A'): | |
# More granular scoring for visualization | |
mol = read_mol(input_pdb) # Read PDB file content | |
# Prepare high-scoring residues script if scores are provided | |
high_score_script = "" | |
if residue_scores is not None: | |
# Filter residues based on their scores | |
class1_score_residues = [resi for resi, score in residue_scores if 0.0 < score <= 0.2] | |
class2_score_residues = [resi for resi, score in residue_scores if 0.2 < score <= 0.4] | |
class3_score_residues = [resi for resi, score in residue_scores if 0.4 < score <= 0.6] | |
class4_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.8] | |
class5_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 1.0] | |
high_score_script = """ | |
// Load the original model and apply white cartoon style | |
let chainModel = viewer.addModel(pdb, "pdb"); | |
chainModel.setStyle({}, {}); | |
chainModel.setStyle( | |
{"chain": "%s"}, | |
{"cartoon": {"color": "white"}} | |
); | |
// Create a new model for high-scoring residues and apply red sticks style | |
let class1Model = viewer.addModel(pdb, "pdb"); | |
class1Model.setStyle({}, {}); | |
class1Model.setStyle( | |
{"chain": "%s", "resi": [%s]}, | |
{"stick": {"color": "0xFFFFFF", "opacity": 0.5}} | |
); | |
// Create a new model for high-scoring residues and apply red sticks style | |
let class2Model = viewer.addModel(pdb, "pdb"); | |
class2Model.setStyle({}, {}); | |
class2Model.setStyle( | |
{"chain": "%s", "resi": [%s]}, | |
{"stick": {"color": "0xFFD580", "opacity": 0.7}} | |
); | |
// Create a new model for high-scoring residues and apply red sticks style | |
let class3Model = viewer.addModel(pdb, "pdb"); | |
class3Model.setStyle({}, {}); | |
class3Model.setStyle( | |
{"chain": "%s", "resi": [%s]}, | |
{"stick": {"color": "0xFFA500", "opacity": 1}} | |
); | |
// Create a new model for high-scoring residues and apply red sticks style | |
let class4Model = viewer.addModel(pdb, "pdb"); | |
class4Model.setStyle({}, {}); | |
class4Model.setStyle( | |
{"chain": "%s", "resi": [%s]}, | |
{"stick": {"color": "0xFF4500", "opacity": 1}} | |
); | |
// Create a new model for high-scoring residues and apply red sticks style | |
let class5Model = viewer.addModel(pdb, "pdb"); | |
class5Model.setStyle({}, {}); | |
class5Model.setStyle( | |
{"chain": "%s", "resi": [%s]}, | |
{"stick": {"color": "0xFF0000", "alpha": 1}} | |
); | |
""" % ( | |
segment, | |
segment, | |
", ".join(str(resi) for resi in class1_score_residues), | |
segment, | |
", ".join(str(resi) for resi in class2_score_residues), | |
segment, | |
", ".join(str(resi) for resi in class3_score_residues), | |
segment, | |
", ".join(str(resi) for resi in class4_score_residues), | |
segment, | |
", ".join(str(resi) for resi in class5_score_residues) | |
) | |
# Generate the full HTML content | |
html_content = f""" | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta http-equiv="content-type" content="text/html; charset=UTF-8" /> | |
<style> | |
.mol-container {{ | |
width: 100%; | |
height: 700px; | |
position: relative; | |
}} | |
</style> | |
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script> | |
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script> | |
</head> | |
<body> | |
<div id="container" class="mol-container"></div> | |
<script> | |
let pdb = `{mol}`; // Use template literal to properly escape PDB content | |
$(document).ready(function () {{ | |
let element = $("#container"); | |
let config = {{ backgroundColor: "white" }}; | |
let viewer = $3Dmol.createViewer(element, config); | |
{high_score_script} | |
// Add hover functionality | |
viewer.setHoverable( | |
{{}}, | |
true, | |
function(atom, viewer, event, container) {{ | |
if (!atom.label) {{ | |
atom.label = viewer.addLabel( | |
atom.resn + ":" +atom.resi + ":" + atom.atom, | |
{{ | |
position: atom, | |
backgroundColor: 'mintcream', | |
fontColor: 'black', | |
fontSize: 18, | |
padding: 4 | |
}} | |
); | |
}} | |
}}, | |
function(atom, viewer) {{ | |
if (atom.label) {{ | |
viewer.removeLabel(atom.label); | |
delete atom.label; | |
}} | |
}} | |
); | |
viewer.zoomTo(); | |
viewer.render(); | |
viewer.zoom(0.8, 2000); | |
}}); | |
</script> | |
</body> | |
</html> | |
""" | |
# Return the HTML content within an iframe safely encoded for special characters | |
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), """).replace(chr(39), "'")}"></iframe>' | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown("# Protein Binding Site Prediction") | |
# Mode selection | |
mode = gr.Radio( | |
choices=["PDB ID", "Upload File"], | |
value="PDB ID", | |
label="Input Mode", | |
info="Choose whether to input a PDB ID or upload a PDB/CIF file." | |
) | |
# Input components based on mode | |
pdb_input = gr.Textbox(value="4BDU", label="PDB ID", placeholder="Enter PDB ID here...") | |
pdb_file = gr.File(label="Upload PDB/CIF File", visible=False) | |
visualize_btn = gr.Button("Visualize Structure") | |
molecule_output2 = Molecule3D(label="Protein Structure", reps=[ | |
{ | |
"model": 0, | |
"style": "cartoon", | |
"color": "whiteCarbon", | |
"residue_range": "", | |
"around": 0, | |
"byres": False, | |
} | |
]) | |
with gr.Row(): | |
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...") | |
prediction_btn = gr.Button("Predict Binding Site") | |
molecule_output = gr.HTML(label="Protein Structure") | |
explanation_vis = gr.Markdown(""" | |
Score dependent colorcoding: | |
- 0.0-0.2: white | |
- 0.2–0.4: light orange | |
- 0.4–0.6: orange | |
- 0.6–0.8: orangered | |
- 0.8–1.0: red | |
""") | |
predictions_output = gr.Textbox(label="Visualize Prediction with PyMol") | |
gr.Markdown("### Download:\n- List of predicted binding site residues\n- PDB with score in beta factor column") | |
download_output = gr.File(label="Download Files", file_count="multiple") | |
def process_interface(mode, pdb_id, pdb_file, chain_id): | |
if mode == "PDB ID": | |
return process_pdb(pdb_id, chain_id) | |
elif mode == "Upload File": | |
_, ext = os.path.splitext(pdb_file.name) | |
file_path = os.path.join('./', f"{_}{ext}") | |
if ext == '.cif': | |
pdb_path = convert_cif_to_pdb(file_path) | |
else: | |
pdb_path= file_path | |
return process_pdb(pdb_path, chain_id) | |
else: | |
return "Error: Invalid mode selected", None, None | |
def fetch_interface(mode, pdb_id, pdb_file): | |
if mode == "PDB ID": | |
return fetch_pdb(pdb_id) | |
elif mode == "Upload File": | |
_, ext = os.path.splitext(pdb_file.name) | |
file_path = os.path.join('./', f"{_}{ext}") | |
#print(ext) | |
if ext == '.cif': | |
pdb_path = convert_cif_to_pdb(file_path) | |
else: | |
pdb_path= file_path | |
#print(pdb_path) | |
return pdb_path | |
else: | |
return "Error: Invalid mode selected" | |
def toggle_mode(selected_mode): | |
if selected_mode == "PDB ID": | |
return gr.update(visible=True), gr.update(visible=False) | |
else: | |
return gr.update(visible=False), gr.update(visible=True) | |
mode.change( | |
toggle_mode, | |
inputs=[mode], | |
outputs=[pdb_input, pdb_file] | |
) | |
prediction_btn.click( | |
process_interface, | |
inputs=[mode, pdb_input, pdb_file, segment_input], | |
outputs=[predictions_output, molecule_output, download_output] | |
) | |
visualize_btn.click( | |
fetch_interface, | |
inputs=[mode, pdb_input, pdb_file], | |
outputs=molecule_output2 | |
) | |
gr.Markdown("## Examples") | |
gr.Examples( | |
examples=[ | |
["7RPZ", "A"], | |
["2IWI", "B"], | |
["2F6V", "A"] | |
], | |
inputs=[pdb_input, segment_input], | |
outputs=[predictions_output, molecule_output, download_output] | |
) | |
demo.launch(share=True) |