test_webpage / app-Copy1.py
ThorbenFroehlking
Updated
5576cdd
from datetime import datetime
import gradio as gr
import requests
from Bio.PDB import PDBParser, MMCIFParser, PDBIO, Select
from Bio.PDB.Polypeptide import is_aa
from Bio.SeqUtils import seq1
from typing import Optional, Tuple
import numpy as np
import os
from gradio_molecule3d import Molecule3D
from model_loader import load_model
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import re
import pandas as pd
import copy
import transformers
from transformers import AutoTokenizer, DataCollatorForTokenClassification
from datasets import Dataset
from scipy.special import expit
# Load model and move to device
#checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
#checkpoint = 'ThorbenF/prot_t5_xl_uniref50_cryptic'
#checkpoint = 'ThorbenF/prot_t5_xl_uniref50_database'
checkpoint = 'ThorbenF/prot_t5_xl_uniref50_full'
max_length = 1500
model, tokenizer = load_model(checkpoint, max_length)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.eval()
def normalize_scores(scores):
min_score = np.min(scores)
max_score = np.max(scores)
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
def read_mol(pdb_path):
"""Read PDB file and return its content as a string"""
with open(pdb_path, 'r') as f:
return f.read()
def fetch_structure(pdb_id: str, output_dir: str = ".") -> str:
"""
Fetch the structure file for a given PDB ID. Prioritizes CIF files.
If a structure file already exists locally, it uses that.
"""
file_path = download_structure(pdb_id, output_dir)
return file_path
def download_structure(pdb_id: str, output_dir: str) -> str:
"""
Attempt to download the structure file in CIF or PDB format.
Returns the path to the downloaded file.
"""
for ext in ['.cif', '.pdb']:
file_path = os.path.join(output_dir, f"{pdb_id}{ext}")
if os.path.exists(file_path):
return file_path
url = f"https://files.rcsb.org/download/{pdb_id}{ext}"
response = requests.get(url, timeout=10)
if response.status_code == 200:
with open(file_path, 'wb') as f:
f.write(response.content)
return file_path
return None
def convert_cif_to_pdb(cif_path: str, output_dir: str = ".") -> str:
"""
Convert a CIF file to PDB format using BioPython and return the PDB file path.
"""
pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))
parser = MMCIFParser(QUIET=True)
structure = parser.get_structure('protein', cif_path)
io = PDBIO()
io.set_structure(structure)
io.save(pdb_path)
return pdb_path
def fetch_pdb(pdb_id):
pdb_path = fetch_structure(pdb_id)
_, ext = os.path.splitext(pdb_path)
if ext == '.cif':
pdb_path = convert_cif_to_pdb(pdb_path)
return pdb_path
def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:
"""
Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores
"""
parser = PDBParser(QUIET=True)
structure = parser.get_structure('protein', input_pdb)
output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb"
# Create scores dictionary for easy lookup
scores_dict = {resi: score for resi, score in residue_scores}
# Create a custom Select class
class ResidueSelector(Select):
def __init__(self, chain_id, selected_residues, scores_dict):
self.chain_id = chain_id
self.selected_residues = selected_residues
self.scores_dict = scores_dict
def accept_chain(self, chain):
return chain.id == self.chain_id
def accept_residue(self, residue):
return residue.id[1] in self.selected_residues
def accept_atom(self, atom):
if atom.parent.id[1] in self.scores_dict:
atom.bfactor = np.absolute(1-self.scores_dict[atom.parent.id[1]]) * 100
return True
# Prepare output PDB with selected chain and residues, modified B-factors
io = PDBIO()
selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)
io.set_structure(structure[0])
io.save(output_pdb, selector)
return output_pdb
def generate_pymol_commands(pdb_id, segment, residues_by_bracket, current_time, score_type):
"""Generate PyMOL commands based on score type"""
pymol_commands = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\nScore Type: {score_type}\n\n"
pymol_commands += f"""
# PyMOL Visualization Commands
fetch {pdb_id}, protein
hide everything, all
show cartoon, chain {segment}
color white, chain {segment}
"""
# Define colors for each score bracket
bracket_colors = {
"0.0-0.2": "white",
"0.2-0.4": "lightorange",
"0.4-0.6": "yelloworange",
"0.6-0.8": "orange",
"0.8-1.0": "red"
}
# Add PyMOL commands for each score bracket
for bracket, residues in residues_by_bracket.items():
if residues: # Only add commands if there are residues in this bracket
color = bracket_colors[bracket]
resi_list = '+'.join(map(str, residues))
pymol_commands += f"""
select bracket_{bracket.replace('.', '').replace('-', '_')}, resi {resi_list} and chain {segment}
show sticks, bracket_{bracket.replace('.', '').replace('-', '_')}
color {color}, bracket_{bracket.replace('.', '').replace('-', '_')}
"""
return pymol_commands
def generate_results_text(pdb_id, segment, residues_by_bracket, protein_residues, sequence, scores, current_time, score_type):
"""Generate results text based on score type"""
result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\nScore Type: {score_type}\n\n"
result_str += "Residues by Score Brackets:\n\n"
# Add residues for each bracket
for bracket, residues in residues_by_bracket.items():
result_str += f"Bracket {bracket}:\n"
result_str += f"Columns: Residue Name, Residue Number, One-letter Code, {score_type} Score\n"
result_str += "\n".join([
f"{res.resname} {res.id[1]} {sequence[i]} {scores[i]:.2f}"
for i, res in enumerate(protein_residues) if res.id[1] in residues
])
result_str += "\n\n"
return result_str
def process_pdb(pdb_id_or_file, segment, score_type='normalized'):
# Determine if input is a PDB ID or file path
if pdb_id_or_file.endswith('.pdb'):
pdb_path = pdb_id_or_file
pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]
else:
pdb_id = pdb_id_or_file
pdb_path = fetch_pdb(pdb_id)
# Determine the file format and choose the appropriate parser
_, ext = os.path.splitext(pdb_path)
parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)
# Parse the structure file
structure = parser.get_structure('protein', pdb_path)
# Extract the specified chain
chain = structure[0][segment]
protein_residues = [res for res in chain if is_aa(res)]
sequence = "".join(seq1(res.resname) for res in protein_residues)
sequence_id = [res.id[1] for res in protein_residues]
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
with torch.no_grad():
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
# Calculate scores and normalize them
raw_scores = expit(outputs[:, 1] - outputs[:, 0])
normalized_scores = normalize_scores(raw_scores)
# Choose which scores to use based on score_type
display_scores = normalized_scores if score_type == 'normalized' else raw_scores
# Zip residues with scores to track the residue ID and score
residue_scores = [(resi, score) for resi, score in zip(sequence_id, display_scores)]
# Also save both score types for later use
raw_residue_scores = [(resi, score) for resi, score in zip(sequence_id, raw_scores)]
norm_residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]
# Define the score brackets
score_brackets = {
"0.0-0.2": (0.0, 0.2),
"0.2-0.4": (0.2, 0.4),
"0.4-0.6": (0.4, 0.6),
"0.6-0.8": (0.6, 0.8),
"0.8-1.0": (0.8, 1.0)
}
# Initialize a dictionary to store residues by bracket
residues_by_bracket = {bracket: [] for bracket in score_brackets}
# Categorize residues into brackets
for resi, score in residue_scores:
for bracket, (lower, upper) in score_brackets.items():
if lower <= score < upper:
residues_by_bracket[bracket].append(resi)
break
# Generate timestamp
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Generate result text and PyMOL commands based on score type
display_score_type = "Normalized" if score_type == 'normalized' else "Raw"
result_str = generate_results_text(pdb_id, segment, residues_by_bracket, protein_residues, sequence,
display_scores, current_time, display_score_type)
pymol_commands = generate_pymol_commands(pdb_id, segment, residues_by_bracket, current_time, display_score_type)
# Create chain-specific PDB with scores in B-factor
scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)
# Molecule visualization with updated script with color mapping
mol_vis = molecule(pdb_path, residue_scores, segment)
# Create prediction file
prediction_file = f"{pdb_id}_{display_score_type.lower()}_binding_site_residues.txt"
with open(prediction_file, "w") as f:
f.write(result_str)
scored_pdb_name = f"{pdb_id}_{segment}_{display_score_type.lower()}_predictions_scores.pdb"
os.rename(scored_pdb, scored_pdb_name)
return pymol_commands, mol_vis, [prediction_file, scored_pdb_name], raw_residue_scores, norm_residue_scores, pdb_id, segment
def molecule(input_pdb, residue_scores=None, segment='A'):
# Read PDB file content
mol = read_mol(input_pdb)
# Prepare high-scoring residues script if scores are provided
high_score_script = ""
if residue_scores is not None:
# Filter residues based on their scores
class1_score_residues = [resi for resi, score in residue_scores if 0.0 < score <= 0.2]
class2_score_residues = [resi for resi, score in residue_scores if 0.2 < score <= 0.4]
class3_score_residues = [resi for resi, score in residue_scores if 0.4 < score <= 0.6]
class4_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.8]
class5_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 1.0]
high_score_script = """
// Load the original model and apply white cartoon style
let chainModel = viewer.addModel(pdb, "pdb");
chainModel.setStyle({}, {});
chainModel.setStyle(
{"chain": "%s"},
{"cartoon": {"color": "white"}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class1Model = viewer.addModel(pdb, "pdb");
class1Model.setStyle({}, {});
class1Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFFFFFF", "opacity": 0.5}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class2Model = viewer.addModel(pdb, "pdb");
class2Model.setStyle({}, {});
class2Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFFD580", "opacity": 0.7}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class3Model = viewer.addModel(pdb, "pdb");
class3Model.setStyle({}, {});
class3Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFFA500", "opacity": 1}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class4Model = viewer.addModel(pdb, "pdb");
class4Model.setStyle({}, {});
class4Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFF4500", "opacity": 1}}
);
// Create a new model for high-scoring residues and apply red sticks style
let class5Model = viewer.addModel(pdb, "pdb");
class5Model.setStyle({}, {});
class5Model.setStyle(
{"chain": "%s", "resi": [%s]},
{"stick": {"color": "0xFF0000", "alpha": 1}}
);
""" % (
segment,
segment,
", ".join(str(resi) for resi in class1_score_residues),
segment,
", ".join(str(resi) for resi in class2_score_residues),
segment,
", ".join(str(resi) for resi in class3_score_residues),
segment,
", ".join(str(resi) for resi in class4_score_residues),
segment,
", ".join(str(resi) for resi in class5_score_residues)
)
# Generate the full HTML content
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<style>
.mol-container {{
width: 100%;
height: 700px;
position: relative;
}}
</style>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
</head>
<body>
<div id="container" class="mol-container"></div>
<script>
let pdb = `{mol}`; // Use template literal to properly escape PDB content
$(document).ready(function () {{
let element = $("#container");
let config = {{ backgroundColor: "white" }};
let viewer = $3Dmol.createViewer(element, config);
{high_score_script}
// Add hover functionality
viewer.setHoverable(
{{}},
true,
function(atom, viewer, event, container) {{
if (!atom.label) {{
atom.label = viewer.addLabel(
atom.resn + ":" +atom.resi + ":" + atom.atom,
{{
position: atom,
backgroundColor: 'mintcream',
fontColor: 'black',
fontSize: 18,
padding: 4
}}
);
}}
}},
function(atom, viewer) {{
if (atom.label) {{
viewer.removeLabel(atom.label);
delete atom.label;
}}
}}
);
viewer.zoomTo();
viewer.render();
viewer.zoom(0.8, 2000);
}});
</script>
</body>
</html>
"""
# Return the HTML content within an iframe safely encoded for special characters
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), "&quot;").replace(chr(39), "&#39;")}"></iframe>'
with gr.Blocks(css="""
/* Customize Gradio button colors */
#visualize-btn, #predict-btn {
background-color: #FF7300; /* Deep orange */
color: white;
border-radius: 5px;
padding: 10px;
font-weight: bold;
}
#visualize-btn:hover, #predict-btn:hover {
background-color: #CC5C00; /* Darkened orange on hover */
}
""") as demo:
gr.Markdown("# Protein Binding Site Prediction")
# Mode selection
mode = gr.Radio(
choices=["PDB ID", "Upload File"],
value="PDB ID",
label="Input Mode",
info="Choose whether to input a PDB ID or upload a PDB/CIF file."
)
# Input components based on mode
pdb_input = gr.Textbox(value="2F6V", label="PDB ID", placeholder="Enter PDB ID here...")
pdb_file = gr.File(label="Upload PDB/CIF File", visible=False)
visualize_btn = gr.Button("Visualize Structure", elem_id="visualize-btn")
molecule_output2 = Molecule3D(label="Protein Structure", reps=[
{
"model": 0,
"style": "cartoon",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False,
}
])
with gr.Row():
segment_input = gr.Textbox(value="A", label="Chain ID (protein)", placeholder="Enter Chain ID here...",
info="Choose in which chain to predict binding sites.")
prediction_btn = gr.Button("Predict Binding Site", elem_id="predict-btn")
# Add score type selector
score_type = gr.Radio(
choices=["Normalized Scores", "Raw Scores"],
value="Normalized Scores",
label="Score Visualization Type",
info="Choose which score type to visualize"
)
molecule_output = gr.HTML(label="Protein Structure")
explanation_vis = gr.Markdown("""
Score dependent colorcoding:
- 0.0-0.2: white
- 0.2–0.4: light orange
- 0.4–0.6: yellow orange
- 0.6–0.8: orange
- 0.8–1.0: red
""")
predictions_output = gr.Textbox(label="Visualize Prediction with PyMol")
gr.Markdown("### Download:\n- List of predicted binding site residues\n- PDB with score in beta factor column")
download_output = gr.File(label="Download Files", file_count="multiple")
# Store these as state variables so we can switch between them
raw_scores_state = gr.State(None)
norm_scores_state = gr.State(None)
last_pdb_path = gr.State(None)
last_segment = gr.State(None)
last_pdb_id = gr.State(None)
def process_interface(mode, pdb_id, pdb_file, chain_id, score_type_val):
selected_score_type = 'normalized' if score_type_val == "Normalized Scores" else 'raw'
# First get the actual PDB file path
if mode == "PDB ID":
pdb_path = fetch_pdb(pdb_id) # Get the actual file path
pymol_cmd, mol_vis, files, raw_scores, norm_scores, pdb_id_result, segment = process_pdb(pdb_path, chain_id, selected_score_type)
# Store the actual file path, not just the PDB ID
return pymol_cmd, mol_vis, files, raw_scores, norm_scores, pdb_path, chain_id, pdb_id_result
elif mode == "Upload File":
_, ext = os.path.splitext(pdb_file.name)
file_path = os.path.join('./', f"{_}{ext}")
if ext == '.cif':
pdb_path = convert_cif_to_pdb(file_path)
else:
pdb_path = file_path
pymol_cmd, mol_vis, files, raw_scores, norm_scores, pdb_id_result, segment = process_pdb(pdb_path, chain_id, selected_score_type)
return pymol_cmd, mol_vis, files, raw_scores, norm_scores, pdb_path, chain_id, pdb_id_result
def update_visualization_and_files(score_type_val, raw_scores, norm_scores, pdb_path, segment, pdb_id):
if raw_scores is None or norm_scores is None or pdb_path is None or segment is None or pdb_id is None:
return None, None, None
# Choose scores based on radio button selection
selected_score_type = 'normalized' if score_type_val == "Normalized Scores" else 'raw'
selected_scores = norm_scores if selected_score_type == 'normalized' else raw_scores
# Generate visualization with selected scores
mol_vis = molecule(pdb_path, selected_scores, segment)
# Generate PyMOL commands and downloadable files
# Get structure for residue info
_, ext = os.path.splitext(pdb_path)
parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)
structure = parser.get_structure('protein', pdb_path)
chain = structure[0][segment]
protein_residues = [res for res in chain if is_aa(res)]
sequence = "".join(seq1(res.resname) for res in protein_residues)
# Define score brackets
score_brackets = {
"0.0-0.2": (0.0, 0.2),
"0.2-0.4": (0.2, 0.4),
"0.4-0.6": (0.4, 0.6),
"0.6-0.8": (0.6, 0.8),
"0.8-1.0": (0.8, 1.0)
}
# Initialize a dictionary to store residues by bracket
residues_by_bracket = {bracket: [] for bracket in score_brackets}
# Categorize residues into brackets
for resi, score in selected_scores:
for bracket, (lower, upper) in score_brackets.items():
if lower <= score < upper:
residues_by_bracket[bracket].append(resi)
break
# Generate timestamp
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Generate result text and PyMOL commands based on score type
display_score_type = "Normalized" if selected_score_type == 'normalized' else "Raw"
scores_array = [score for _, score in selected_scores]
result_str = generate_results_text(pdb_id, segment, residues_by_bracket, protein_residues, sequence,
scores_array, current_time, display_score_type)
pymol_commands = generate_pymol_commands(pdb_id, segment, residues_by_bracket, current_time, display_score_type)
# Create chain-specific PDB with scores in B-factor
scored_pdb = create_chain_specific_pdb(pdb_path, segment, selected_scores, protein_residues)
# Create prediction file
prediction_file = f"{pdb_id}_{display_score_type.lower()}_binding_site_residues.txt"
with open(prediction_file, "w") as f:
f.write(result_str)
scored_pdb_name = f"{pdb_id}_{segment}_{display_score_type.lower()}_predictions_scores.pdb"
os.rename(scored_pdb, scored_pdb_name)
return mol_vis, pymol_commands, [prediction_file, scored_pdb_name]
def fetch_interface(mode, pdb_id, pdb_file):
if mode == "PDB ID":
return fetch_pdb(pdb_id)
elif mode == "Upload File":
_, ext = os.path.splitext(pdb_file.name)
file_path = os.path.join('./', f"{_}{ext}")
if ext == '.cif':
pdb_path = convert_cif_to_pdb(file_path)
else:
pdb_path= file_path
return pdb_path
def toggle_mode(selected_mode):
if selected_mode == "PDB ID":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
mode.change(
toggle_mode,
inputs=[mode],
outputs=[pdb_input, pdb_file]
)
prediction_btn.click(
process_interface,
inputs=[mode, pdb_input, pdb_file, segment_input, score_type],
outputs=[predictions_output, molecule_output, download_output,
raw_scores_state, norm_scores_state, last_pdb_path, last_segment, last_pdb_id]
)
# Update visualization, PyMOL commands, and files when score type changes
score_type.change(
update_visualization_and_files,
inputs=[score_type, raw_scores_state, norm_scores_state, last_pdb_path, last_segment, last_pdb_id],
outputs=[molecule_output, predictions_output, download_output]
)
visualize_btn.click(
fetch_interface,
inputs=[mode, pdb_input, pdb_file],
outputs=molecule_output2
)
gr.Markdown("## Examples")
gr.Examples(
examples=[
["7RPZ", "A"],
["2IWI", "B"],
["7LCJ", "R"],
["4OBE", "A"]
],
inputs=[pdb_input, segment_input],
outputs=[predictions_output, molecule_output, download_output]
)
demo.launch(share=True)