Spaces:
Running
Running
Update
Browse files- .ipynb_checkpoints/app-checkpoint.py +87 -46
- .ipynb_checkpoints/requirements-checkpoint.txt +1 -1
- app.py +87 -46
- requirements.txt +1 -1
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -37,7 +37,7 @@ from scipy.special import expit
|
|
37 |
|
38 |
import requests
|
39 |
|
40 |
-
import
|
41 |
|
42 |
#import peft
|
43 |
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
@@ -46,6 +46,21 @@ import py3Dmol
|
|
46 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
47 |
max_length = 1500
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# Load model and move to device
|
50 |
model, tokenizer = load_model(checkpoint, max_length)
|
51 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -53,7 +68,6 @@ model.to(device)
|
|
53 |
model.eval()
|
54 |
|
55 |
def create_dataset(tokenizer, seqs, labels, checkpoint):
|
56 |
-
|
57 |
tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True)
|
58 |
dataset = Dataset.from_dict(tokenized)
|
59 |
|
@@ -68,7 +82,6 @@ def create_dataset(tokenizer, seqs, labels, checkpoint):
|
|
68 |
return dataset
|
69 |
|
70 |
def convert_predictions(input_logits):
|
71 |
-
|
72 |
all_probs = []
|
73 |
for logits in input_logits:
|
74 |
logits = logits.reshape(-1, 2)
|
@@ -78,13 +91,11 @@ def convert_predictions(input_logits):
|
|
78 |
return np.concatenate(all_probs)
|
79 |
|
80 |
def normalize_scores(scores):
|
81 |
-
|
82 |
min_score = np.min(scores)
|
83 |
max_score = np.max(scores)
|
84 |
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
85 |
|
86 |
def predict_protein_sequence(test_one_letter_sequence):
|
87 |
-
|
88 |
# Sanitize input sequence
|
89 |
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \
|
90 |
.replace("B", "X").replace("U", "X") \
|
@@ -135,58 +146,88 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
135 |
|
136 |
return result_str
|
137 |
|
138 |
-
def
|
139 |
-
|
140 |
try:
|
|
|
|
|
|
|
141 |
# Fetch the PDB structure from RCSB
|
142 |
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
|
143 |
-
|
144 |
-
|
145 |
-
if response.status_code != 200:
|
146 |
-
return "Failed to load PDB structure. Please check the PDB ID."
|
147 |
|
148 |
-
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
viewer.addModel(`{pdb_structure}`, "pdb");
|
157 |
-
viewer.setStyle({{}}, {{"cartoon": {{"color": "spectrum"}}}});
|
158 |
-
viewer.zoomTo();
|
159 |
-
viewer.render();
|
160 |
-
</script>
|
161 |
-
"""
|
162 |
-
return visualization
|
163 |
|
164 |
except Exception as e:
|
165 |
-
|
|
|
166 |
|
167 |
-
def
|
168 |
-
|
169 |
# Predict binding sites
|
170 |
binding_site_predictions = predict_protein_sequence(sequence)
|
171 |
|
172 |
-
# Fetch
|
173 |
-
|
174 |
|
175 |
-
return binding_site_predictions,
|
176 |
|
177 |
# Create Gradio interface
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
gr.
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
import requests
|
39 |
|
40 |
+
from gradio_molecule3d import Molecule3D
|
41 |
|
42 |
#import peft
|
43 |
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
|
|
46 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
47 |
max_length = 1500
|
48 |
|
49 |
+
# Default representations for molecule rendering
|
50 |
+
reps = [
|
51 |
+
{
|
52 |
+
"model": 0,
|
53 |
+
"chain": "",
|
54 |
+
"resname": "",
|
55 |
+
"style": "cartoon",
|
56 |
+
"color": "spectrum",
|
57 |
+
"residue_range": "",
|
58 |
+
"around": 0,
|
59 |
+
"byres": False,
|
60 |
+
"visible": True
|
61 |
+
}
|
62 |
+
]
|
63 |
+
|
64 |
# Load model and move to device
|
65 |
model, tokenizer = load_model(checkpoint, max_length)
|
66 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
68 |
model.eval()
|
69 |
|
70 |
def create_dataset(tokenizer, seqs, labels, checkpoint):
|
|
|
71 |
tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True)
|
72 |
dataset = Dataset.from_dict(tokenized)
|
73 |
|
|
|
82 |
return dataset
|
83 |
|
84 |
def convert_predictions(input_logits):
|
|
|
85 |
all_probs = []
|
86 |
for logits in input_logits:
|
87 |
logits = logits.reshape(-1, 2)
|
|
|
91 |
return np.concatenate(all_probs)
|
92 |
|
93 |
def normalize_scores(scores):
|
|
|
94 |
min_score = np.min(scores)
|
95 |
max_score = np.max(scores)
|
96 |
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
97 |
|
98 |
def predict_protein_sequence(test_one_letter_sequence):
|
|
|
99 |
# Sanitize input sequence
|
100 |
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \
|
101 |
.replace("B", "X").replace("U", "X") \
|
|
|
146 |
|
147 |
return result_str
|
148 |
|
149 |
+
def fetch_pdb(pdb_id):
|
|
|
150 |
try:
|
151 |
+
# Create a directory to store PDB files if it doesn't exist
|
152 |
+
os.makedirs('pdb_files', exist_ok=True)
|
153 |
+
|
154 |
# Fetch the PDB structure from RCSB
|
155 |
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
|
156 |
+
pdb_path = f'pdb_files/{pdb_id}.pdb'
|
|
|
|
|
|
|
157 |
|
158 |
+
# Download the file
|
159 |
+
response = requests.get(pdb_url)
|
160 |
|
161 |
+
if response.status_code == 200:
|
162 |
+
with open(pdb_path, 'wb') as f:
|
163 |
+
f.write(response.content)
|
164 |
+
return pdb_path
|
165 |
+
else:
|
166 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
except Exception as e:
|
169 |
+
print(f"Error fetching PDB: {e}")
|
170 |
+
return None
|
171 |
|
172 |
+
def process_input(sequence, pdb_id):
|
|
|
173 |
# Predict binding sites
|
174 |
binding_site_predictions = predict_protein_sequence(sequence)
|
175 |
|
176 |
+
# Fetch PDB file
|
177 |
+
pdb_path = fetch_pdb(pdb_id)
|
178 |
|
179 |
+
return binding_site_predictions, pdb_path
|
180 |
|
181 |
# Create Gradio interface
|
182 |
+
with gr.Blocks() as demo:
|
183 |
+
gr.Markdown("# Protein Binding Site Prediction")
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
with gr.Column():
|
187 |
+
# Sequence input
|
188 |
+
sequence_input = gr.Textbox(
|
189 |
+
lines=2,
|
190 |
+
placeholder="Enter protein sequence here...",
|
191 |
+
label="Protein Sequence"
|
192 |
+
)
|
193 |
+
|
194 |
+
# PDB ID input
|
195 |
+
pdb_input = gr.Textbox(
|
196 |
+
lines=1,
|
197 |
+
placeholder="Enter PDB ID here...",
|
198 |
+
label="PDB ID for 3D Visualization"
|
199 |
+
)
|
200 |
+
|
201 |
+
# Predict button
|
202 |
+
predict_btn = gr.Button("Predict Binding Sites")
|
203 |
+
|
204 |
+
with gr.Column():
|
205 |
+
# Binding site predictions output
|
206 |
+
predictions_output = gr.Textbox(
|
207 |
+
label="Binding Site Predictions"
|
208 |
+
)
|
209 |
+
|
210 |
+
# 3D Molecule visualization
|
211 |
+
molecule_output = Molecule3D(
|
212 |
+
label="Protein Structure",
|
213 |
+
reps=reps
|
214 |
+
)
|
215 |
+
|
216 |
+
# Prediction logic
|
217 |
+
predict_btn.click(
|
218 |
+
process_input,
|
219 |
+
inputs=[sequence_input, pdb_input],
|
220 |
+
outputs=[predictions_output, molecule_output]
|
221 |
+
)
|
222 |
+
|
223 |
+
# Add some example inputs
|
224 |
+
gr.Markdown("## Examples")
|
225 |
+
gr.Examples(
|
226 |
+
examples=[
|
227 |
+
["MKVLWAALLVTFLAGCQAKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRWVQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQLTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEVQAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQERAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQAQQRL", "1ABC"],
|
228 |
+
],
|
229 |
+
inputs=[sequence_input, pdb_input],
|
230 |
+
outputs=[predictions_output, molecule_output]
|
231 |
+
)
|
232 |
+
|
233 |
+
demo.launch()
|
.ipynb_checkpoints/requirements-checkpoint.txt
CHANGED
@@ -9,4 +9,4 @@ scikit-learn>=0.24.0
|
|
9 |
sentencepiece
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
-
|
|
|
9 |
sentencepiece
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
+
gradio_molecule3d
|
app.py
CHANGED
@@ -37,7 +37,7 @@ from scipy.special import expit
|
|
37 |
|
38 |
import requests
|
39 |
|
40 |
-
import
|
41 |
|
42 |
#import peft
|
43 |
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
@@ -46,6 +46,21 @@ import py3Dmol
|
|
46 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
47 |
max_length = 1500
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# Load model and move to device
|
50 |
model, tokenizer = load_model(checkpoint, max_length)
|
51 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -53,7 +68,6 @@ model.to(device)
|
|
53 |
model.eval()
|
54 |
|
55 |
def create_dataset(tokenizer, seqs, labels, checkpoint):
|
56 |
-
|
57 |
tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True)
|
58 |
dataset = Dataset.from_dict(tokenized)
|
59 |
|
@@ -68,7 +82,6 @@ def create_dataset(tokenizer, seqs, labels, checkpoint):
|
|
68 |
return dataset
|
69 |
|
70 |
def convert_predictions(input_logits):
|
71 |
-
|
72 |
all_probs = []
|
73 |
for logits in input_logits:
|
74 |
logits = logits.reshape(-1, 2)
|
@@ -78,13 +91,11 @@ def convert_predictions(input_logits):
|
|
78 |
return np.concatenate(all_probs)
|
79 |
|
80 |
def normalize_scores(scores):
|
81 |
-
|
82 |
min_score = np.min(scores)
|
83 |
max_score = np.max(scores)
|
84 |
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
85 |
|
86 |
def predict_protein_sequence(test_one_letter_sequence):
|
87 |
-
|
88 |
# Sanitize input sequence
|
89 |
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \
|
90 |
.replace("B", "X").replace("U", "X") \
|
@@ -135,58 +146,88 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
135 |
|
136 |
return result_str
|
137 |
|
138 |
-
def
|
139 |
-
|
140 |
try:
|
|
|
|
|
|
|
141 |
# Fetch the PDB structure from RCSB
|
142 |
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
|
143 |
-
|
144 |
-
|
145 |
-
if response.status_code != 200:
|
146 |
-
return "Failed to load PDB structure. Please check the PDB ID."
|
147 |
|
148 |
-
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
viewer.addModel(`{pdb_structure}`, "pdb");
|
157 |
-
viewer.setStyle({{}}, {{"cartoon": {{"color": "spectrum"}}}});
|
158 |
-
viewer.zoomTo();
|
159 |
-
viewer.render();
|
160 |
-
</script>
|
161 |
-
"""
|
162 |
-
return visualization
|
163 |
|
164 |
except Exception as e:
|
165 |
-
|
|
|
166 |
|
167 |
-
def
|
168 |
-
|
169 |
# Predict binding sites
|
170 |
binding_site_predictions = predict_protein_sequence(sequence)
|
171 |
|
172 |
-
# Fetch
|
173 |
-
|
174 |
|
175 |
-
return binding_site_predictions,
|
176 |
|
177 |
# Create Gradio interface
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
gr.
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
import requests
|
39 |
|
40 |
+
from gradio_molecule3d import Molecule3D
|
41 |
|
42 |
#import peft
|
43 |
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
|
|
46 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
47 |
max_length = 1500
|
48 |
|
49 |
+
# Default representations for molecule rendering
|
50 |
+
reps = [
|
51 |
+
{
|
52 |
+
"model": 0,
|
53 |
+
"chain": "",
|
54 |
+
"resname": "",
|
55 |
+
"style": "cartoon",
|
56 |
+
"color": "spectrum",
|
57 |
+
"residue_range": "",
|
58 |
+
"around": 0,
|
59 |
+
"byres": False,
|
60 |
+
"visible": True
|
61 |
+
}
|
62 |
+
]
|
63 |
+
|
64 |
# Load model and move to device
|
65 |
model, tokenizer = load_model(checkpoint, max_length)
|
66 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
68 |
model.eval()
|
69 |
|
70 |
def create_dataset(tokenizer, seqs, labels, checkpoint):
|
|
|
71 |
tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True)
|
72 |
dataset = Dataset.from_dict(tokenized)
|
73 |
|
|
|
82 |
return dataset
|
83 |
|
84 |
def convert_predictions(input_logits):
|
|
|
85 |
all_probs = []
|
86 |
for logits in input_logits:
|
87 |
logits = logits.reshape(-1, 2)
|
|
|
91 |
return np.concatenate(all_probs)
|
92 |
|
93 |
def normalize_scores(scores):
|
|
|
94 |
min_score = np.min(scores)
|
95 |
max_score = np.max(scores)
|
96 |
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
97 |
|
98 |
def predict_protein_sequence(test_one_letter_sequence):
|
|
|
99 |
# Sanitize input sequence
|
100 |
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \
|
101 |
.replace("B", "X").replace("U", "X") \
|
|
|
146 |
|
147 |
return result_str
|
148 |
|
149 |
+
def fetch_pdb(pdb_id):
|
|
|
150 |
try:
|
151 |
+
# Create a directory to store PDB files if it doesn't exist
|
152 |
+
os.makedirs('pdb_files', exist_ok=True)
|
153 |
+
|
154 |
# Fetch the PDB structure from RCSB
|
155 |
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
|
156 |
+
pdb_path = f'pdb_files/{pdb_id}.pdb'
|
|
|
|
|
|
|
157 |
|
158 |
+
# Download the file
|
159 |
+
response = requests.get(pdb_url)
|
160 |
|
161 |
+
if response.status_code == 200:
|
162 |
+
with open(pdb_path, 'wb') as f:
|
163 |
+
f.write(response.content)
|
164 |
+
return pdb_path
|
165 |
+
else:
|
166 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
except Exception as e:
|
169 |
+
print(f"Error fetching PDB: {e}")
|
170 |
+
return None
|
171 |
|
172 |
+
def process_input(sequence, pdb_id):
|
|
|
173 |
# Predict binding sites
|
174 |
binding_site_predictions = predict_protein_sequence(sequence)
|
175 |
|
176 |
+
# Fetch PDB file
|
177 |
+
pdb_path = fetch_pdb(pdb_id)
|
178 |
|
179 |
+
return binding_site_predictions, pdb_path
|
180 |
|
181 |
# Create Gradio interface
|
182 |
+
with gr.Blocks() as demo:
|
183 |
+
gr.Markdown("# Protein Binding Site Prediction")
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
with gr.Column():
|
187 |
+
# Sequence input
|
188 |
+
sequence_input = gr.Textbox(
|
189 |
+
lines=2,
|
190 |
+
placeholder="Enter protein sequence here...",
|
191 |
+
label="Protein Sequence"
|
192 |
+
)
|
193 |
+
|
194 |
+
# PDB ID input
|
195 |
+
pdb_input = gr.Textbox(
|
196 |
+
lines=1,
|
197 |
+
placeholder="Enter PDB ID here...",
|
198 |
+
label="PDB ID for 3D Visualization"
|
199 |
+
)
|
200 |
+
|
201 |
+
# Predict button
|
202 |
+
predict_btn = gr.Button("Predict Binding Sites")
|
203 |
+
|
204 |
+
with gr.Column():
|
205 |
+
# Binding site predictions output
|
206 |
+
predictions_output = gr.Textbox(
|
207 |
+
label="Binding Site Predictions"
|
208 |
+
)
|
209 |
+
|
210 |
+
# 3D Molecule visualization
|
211 |
+
molecule_output = Molecule3D(
|
212 |
+
label="Protein Structure",
|
213 |
+
reps=reps
|
214 |
+
)
|
215 |
+
|
216 |
+
# Prediction logic
|
217 |
+
predict_btn.click(
|
218 |
+
process_input,
|
219 |
+
inputs=[sequence_input, pdb_input],
|
220 |
+
outputs=[predictions_output, molecule_output]
|
221 |
+
)
|
222 |
+
|
223 |
+
# Add some example inputs
|
224 |
+
gr.Markdown("## Examples")
|
225 |
+
gr.Examples(
|
226 |
+
examples=[
|
227 |
+
["MKVLWAALLVTFLAGCQAKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRWVQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQLTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEVQAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQERAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQAQQRL", "1ABC"],
|
228 |
+
],
|
229 |
+
inputs=[sequence_input, pdb_input],
|
230 |
+
outputs=[predictions_output, molecule_output]
|
231 |
+
)
|
232 |
+
|
233 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -9,4 +9,4 @@ scikit-learn>=0.24.0
|
|
9 |
sentencepiece
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
-
|
|
|
9 |
sentencepiece
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
+
gradio_molecule3d
|