diff --git "a/.ipynb_checkpoints/test4-checkpoint.ipynb" "b/.ipynb_checkpoints/test4-checkpoint.ipynb"
new file mode 100644--- /dev/null
+++ "b/.ipynb_checkpoints/test4-checkpoint.ipynb"
@@ -0,0 +1,2830 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "2c614d31-f96a-4164-8293-1cec9b0b2cd0",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "* Running on local URL: http://127.0.0.1:7870\n",
+ "* Running on public URL: https://c83ac6a1bebcdb4528.gradio.live\n",
+ "\n",
+ "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": []
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from datetime import datetime\n",
+ "import gradio as gr\n",
+ "import requests\n",
+ "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
+ "from Bio.PDB.Polypeptide import is_aa\n",
+ "from Bio.SeqUtils import seq1\n",
+ "from typing import Optional, Tuple\n",
+ "import numpy as np\n",
+ "import os\n",
+ "from gradio_molecule3d import Molecule3D\n",
+ "\n",
+ "import re\n",
+ "import pandas as pd\n",
+ "import copy\n",
+ "\n",
+ "from scipy.special import expit\n",
+ "\n",
+ "\n",
+ "\n",
+ "def normalize_scores(scores):\n",
+ " min_score = np.min(scores)\n",
+ " max_score = np.max(scores)\n",
+ " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
+ "\n",
+ "def read_mol(pdb_path):\n",
+ " \"\"\"Read PDB file and return its content as a string\"\"\"\n",
+ " with open(pdb_path, 'r') as f:\n",
+ " return f.read()\n",
+ "\n",
+ "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
+ " If a structure file already exists locally, it uses that.\n",
+ " \"\"\"\n",
+ " file_path = download_structure(pdb_id, output_dir)\n",
+ " if file_path:\n",
+ " return file_path\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Attempt to download the structure file in CIF or PDB format.\n",
+ " Returns the path to the downloaded file, or None if download fails.\n",
+ " \"\"\"\n",
+ " for ext in ['.cif', '.pdb']:\n",
+ " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
+ " if os.path.exists(file_path):\n",
+ " return file_path\n",
+ " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
+ " try:\n",
+ " response = requests.get(url, timeout=10)\n",
+ " if response.status_code == 200:\n",
+ " with open(file_path, 'wb') as f:\n",
+ " f.write(response.content)\n",
+ " return file_path\n",
+ " except Exception as e:\n",
+ " print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
+ " return None\n",
+ "\n",
+ "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
+ " \"\"\"\n",
+ " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
+ " \"\"\"\n",
+ " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
+ " parser = MMCIFParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', cif_path)\n",
+ " io = PDBIO()\n",
+ " io.set_structure(structure)\n",
+ " io.save(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def fetch_pdb(pdb_id):\n",
+ " pdb_path = fetch_structure(pdb_id)\n",
+ " if not pdb_path:\n",
+ " return None\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " if ext == '.cif':\n",
+ " pdb_path = convert_cif_to_pdb(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:\n",
+ " \"\"\"\n",
+ " Create a PDB file with only the specified chain and replace B-factor with prediction scores\n",
+ " \"\"\"\n",
+ " # Read the original PDB file\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', input_pdb)\n",
+ " \n",
+ " # Prepare a new structure with only the specified chain\n",
+ " new_structure = structure.copy()\n",
+ " for model in new_structure:\n",
+ " # Remove all chains except the specified one\n",
+ " chains_to_remove = [chain for chain in model if chain.id != chain_id]\n",
+ " for chain in chains_to_remove:\n",
+ " model.detach_child(chain.id)\n",
+ " \n",
+ " # Create a modified PDB with scores in B-factor\n",
+ " scores_dict = {resi: score for resi, score in residue_scores}\n",
+ " for model in new_structure:\n",
+ " for chain in model:\n",
+ " for residue in chain:\n",
+ " if residue.id[1] in scores_dict:\n",
+ " for atom in residue:\n",
+ " atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range\n",
+ " \n",
+ " # Save the modified structure\n",
+ " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
+ " io = PDBIO()\n",
+ " io.set_structure(new_structure)\n",
+ " io.save(output_pdb)\n",
+ " \n",
+ " return output_pdb\n",
+ "\n",
+ "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
+ " \"\"\"\n",
+ " Calculate the geometric center of high-scoring residues\n",
+ " \"\"\"\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " \n",
+ " # Collect coordinates of CA atoms from high-scoring residues\n",
+ " coords = []\n",
+ " for model in structure:\n",
+ " for chain in model:\n",
+ " if chain.id == chain_id:\n",
+ " for residue in chain:\n",
+ " if residue.id[1] in high_score_residues:\n",
+ " if 'CA' in residue: # Use alpha carbon as representative\n",
+ " ca_atom = residue['CA']\n",
+ " coords.append(ca_atom.coord)\n",
+ " \n",
+ " # Calculate geometric center\n",
+ " if coords:\n",
+ " center = np.mean(coords, axis=0)\n",
+ " return center\n",
+ " return None\n",
+ "\n",
+ "\n",
+ "\n",
+ "def process_pdb(pdb_id_or_file, segment):\n",
+ " # Determine if input is a PDB ID or file path\n",
+ " if pdb_id_or_file.endswith('.pdb'):\n",
+ " pdb_path = pdb_id_or_file\n",
+ " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
+ " else:\n",
+ " pdb_id = pdb_id_or_file\n",
+ " pdb_path = fetch_pdb(pdb_id)\n",
+ " \n",
+ " if not pdb_path:\n",
+ " return \"Failed to fetch PDB file\", None, None\n",
+ " \n",
+ " # Determine the file format and choose the appropriate parser\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
+ " \n",
+ " try:\n",
+ " # Parse the structure file\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " except Exception as e:\n",
+ " return f\"Error parsing structure file: {e}\", None, None\n",
+ " \n",
+ " # Extract the specified chain\n",
+ " try:\n",
+ " chain = structure[0][segment]\n",
+ " except KeyError:\n",
+ " return \"Invalid Chain ID\", None, None\n",
+ " \n",
+ " protein_residues = [res for res in chain if is_aa(res)]\n",
+ " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
+ " sequence_id = [res.id[1] for res in protein_residues]\n",
+ " \n",
+ " scores = np.random.rand(len(sequence))\n",
+ " normalized_scores = normalize_scores(scores)\n",
+ " \n",
+ " # Zip residues with scores to track the residue ID and score\n",
+ " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
+ "\n",
+ " # Identify high and mid scoring residues\n",
+ " high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
+ " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
+ "\n",
+ " # Calculate geometric center of high-scoring residues\n",
+ " geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n",
+ " pymol_selection = f\"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\"\n",
+ " pymol_center_cmd = f\"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\" if geo_center is not None else \"\"\n",
+ "\n",
+ " # Generate the result string\n",
+ " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
+ " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
+ " result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
+ " result_str += \"\\n\".join([\n",
+ " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
+ " for i, res in enumerate(protein_residues)])\n",
+ " \n",
+ " # Create prediction and scored PDB files\n",
+ " prediction_file = f\"{pdb_id}_predictions.txt\"\n",
+ " with open(prediction_file, \"w\") as f:\n",
+ " f.write(result_str)\n",
+ "\n",
+ " # Create chain-specific PDB with scores in B-factor\n",
+ " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)\n",
+ "\n",
+ " # Molecule visualization with updated script\n",
+ " mol_vis = molecule(pdb_path, residue_scores, segment)\n",
+ "\n",
+ " # Construct PyMOL command suggestions\n",
+ " pymol_commands = f\"\"\"\n",
+ "PyMOL Visualization Commands:\n",
+ "1. Load PDB: load {os.path.abspath(pdb_path)}\n",
+ "2. Select high-scoring residues: {pymol_selection}\n",
+ "3. Highlight high-scoring residues: show sticks, high_score_residues\n",
+ "{pymol_center_cmd}\n",
+ "\"\"\"\n",
+ " \n",
+ " return result_str + \"\\n\\n\" + pymol_commands, mol_vis, [prediction_file, scored_pdb]\n",
+ "\n",
+ "\n",
+ "def molecule(input_pdb, residue_scores=None, segment='A'):\n",
+ " mol = read_mol(input_pdb) # Read PDB file content\n",
+ "\n",
+ " # Prepare high-scoring residues script if scores are provided\n",
+ " high_score_script = \"\"\n",
+ " if residue_scores is not None:\n",
+ " # Filter residues based on their scores\n",
+ " high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
+ " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
+ " \n",
+ " high_score_script = \"\"\"\n",
+ " // Load the original model and apply white cartoon style\n",
+ " let chainModel = viewer.addModel(pdb, \"pdb\");\n",
+ " chainModel.setStyle({}, {});\n",
+ " chainModel.setStyle(\n",
+ " {\"chain\": \"%s\"}, \n",
+ " {\"cartoon\": {\"color\": \"white\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let highScoreModel = viewer.addModel(pdb, \"pdb\");\n",
+ " highScoreModel.setStyle({}, {});\n",
+ " highScoreModel.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"red\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for medium-scoring residues and apply orange sticks style\n",
+ " let midScoreModel = viewer.addModel(pdb, \"pdb\");\n",
+ " midScoreModel.setStyle({}, {});\n",
+ " midScoreModel.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"orange\"}}\n",
+ " );\n",
+ " \"\"\" % (\n",
+ " segment,\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in high_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in mid_score_residues)\n",
+ " )\n",
+ " \n",
+ " # Generate the full HTML content\n",
+ " html_content = f\"\"\"\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \"\"\"\n",
+ " \n",
+ " # Return the HTML content within an iframe safely encoded for special characters\n",
+ " return f''\n",
+ "\n",
+ "\n",
+ "# Gradio UI\n",
+ "with gr.Blocks() as demo:\n",
+ " gr.Markdown(\"# Protein Binding Site Prediction\")\n",
+ " \n",
+ " with gr.Row():\n",
+ " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
+ " visualize_btn = gr.Button(\"Visualize Structure\")\n",
+ "\n",
+ " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
+ " {\n",
+ " \"model\": 0,\n",
+ " \"style\": \"cartoon\",\n",
+ " \"color\": \"whiteCarbon\",\n",
+ " \"residue_range\": \"\",\n",
+ " \"around\": 0,\n",
+ " \"byres\": False,\n",
+ " }\n",
+ " ])\n",
+ "\n",
+ " with gr.Row():\n",
+ " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
+ " prediction_btn = gr.Button(\"Predict Binding Site\")\n",
+ "\n",
+ "\n",
+ " molecule_output = gr.HTML(label=\"Protein Structure\")\n",
+ " predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
+ " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
+ " \n",
+ " prediction_btn.click(\n",
+ " process_pdb, \n",
+ " inputs=[\n",
+ " pdb_input, \n",
+ " segment_input\n",
+ " ], \n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ " visualize_btn.click(\n",
+ " fetch_pdb, \n",
+ " inputs=[pdb_input], \n",
+ " outputs=molecule_output2\n",
+ " )\n",
+ "\n",
+ " gr.Markdown(\"## Examples\")\n",
+ " gr.Examples(\n",
+ " examples=[\n",
+ " [\"7RPZ\", \"A\"],\n",
+ " [\"2IWI\", \"B\"],\n",
+ " [\"2F6V\", \"A\"]\n",
+ " ],\n",
+ " inputs=[pdb_input, segment_input],\n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ "demo.launch(share=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "db0b4763-5368-4d73-b5f6-d1c168f7fcd8",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "* Running on local URL: http://127.0.0.1:7864\n",
+ "* Running on public URL: https://060e61e5b829d9fb6e.gradio.live\n",
+ "\n",
+ "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": []
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from datetime import datetime\n",
+ "import gradio as gr\n",
+ "import requests\n",
+ "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
+ "from Bio.PDB.Polypeptide import is_aa\n",
+ "from Bio.SeqUtils import seq1\n",
+ "from Bio.PDB import Select\n",
+ "from typing import Optional, Tuple\n",
+ "import numpy as np\n",
+ "import os\n",
+ "from gradio_molecule3d import Molecule3D\n",
+ "\n",
+ "import re\n",
+ "import pandas as pd\n",
+ "import copy\n",
+ "\n",
+ "from scipy.special import expit\n",
+ "\n",
+ "def normalize_scores(scores):\n",
+ " min_score = np.min(scores)\n",
+ " max_score = np.max(scores)\n",
+ " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
+ "\n",
+ "def read_mol(pdb_path):\n",
+ " \"\"\"Read PDB file and return its content as a string\"\"\"\n",
+ " with open(pdb_path, 'r') as f:\n",
+ " return f.read()\n",
+ "\n",
+ "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
+ " If a structure file already exists locally, it uses that.\n",
+ " \"\"\"\n",
+ " file_path = download_structure(pdb_id, output_dir)\n",
+ " if file_path:\n",
+ " return file_path\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Attempt to download the structure file in CIF or PDB format.\n",
+ " Returns the path to the downloaded file, or None if download fails.\n",
+ " \"\"\"\n",
+ " for ext in ['.cif', '.pdb']:\n",
+ " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
+ " if os.path.exists(file_path):\n",
+ " return file_path\n",
+ " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
+ " try:\n",
+ " response = requests.get(url, timeout=10)\n",
+ " if response.status_code == 200:\n",
+ " with open(file_path, 'wb') as f:\n",
+ " f.write(response.content)\n",
+ " return file_path\n",
+ " except Exception as e:\n",
+ " print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
+ " return None\n",
+ "\n",
+ "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
+ " \"\"\"\n",
+ " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
+ " \"\"\"\n",
+ " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
+ " parser = MMCIFParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', cif_path)\n",
+ " io = PDBIO()\n",
+ " io.set_structure(structure)\n",
+ " io.save(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def fetch_pdb(pdb_id):\n",
+ " pdb_path = fetch_structure(pdb_id)\n",
+ " if not pdb_path:\n",
+ " return None\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " if ext == '.cif':\n",
+ " pdb_path = convert_cif_to_pdb(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n",
+ " \"\"\"\n",
+ " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n",
+ " \"\"\"\n",
+ " # Read the original PDB file\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', input_pdb)\n",
+ " \n",
+ " # Prepare a new structure with only the specified chain and selected residues\n",
+ " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
+ " \n",
+ " # Create scores dictionary for easy lookup\n",
+ " scores_dict = {resi: score for resi, score in residue_scores}\n",
+ "\n",
+ " # Create a custom Select class\n",
+ " class ResidueSelector(Select):\n",
+ " def __init__(self, chain_id, selected_residues, scores_dict):\n",
+ " self.chain_id = chain_id\n",
+ " self.selected_residues = selected_residues\n",
+ " self.scores_dict = scores_dict\n",
+ " \n",
+ " def accept_chain(self, chain):\n",
+ " return chain.id == self.chain_id\n",
+ " \n",
+ " def accept_residue(self, residue):\n",
+ " return residue.id[1] in self.selected_residues\n",
+ "\n",
+ " def accept_atom(self, atom):\n",
+ " if atom.parent.id[1] in self.scores_dict:\n",
+ " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n",
+ " return True\n",
+ "\n",
+ " # Prepare output PDB with selected chain and residues, modified B-factors\n",
+ " io = PDBIO()\n",
+ " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n",
+ " \n",
+ " io.set_structure(structure[0])\n",
+ " io.save(output_pdb, selector)\n",
+ " \n",
+ " return output_pdb\n",
+ "\n",
+ "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
+ " \"\"\"\n",
+ " Calculate the geometric center of high-scoring residues\n",
+ " \"\"\"\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " \n",
+ " # Collect coordinates of CA atoms from high-scoring residues\n",
+ " coords = []\n",
+ " for model in structure:\n",
+ " for chain in model:\n",
+ " if chain.id == chain_id:\n",
+ " for residue in chain:\n",
+ " if residue.id[1] in high_score_residues:\n",
+ " if 'CA' in residue: # Use alpha carbon as representative\n",
+ " ca_atom = residue['CA']\n",
+ " coords.append(ca_atom.coord)\n",
+ " \n",
+ " # Calculate geometric center\n",
+ " if coords:\n",
+ " center = np.mean(coords, axis=0)\n",
+ " return center\n",
+ " return None\n",
+ "\n",
+ "def process_pdb(pdb_id_or_file, segment):\n",
+ " # Determine if input is a PDB ID or file path\n",
+ " if pdb_id_or_file.endswith('.pdb'):\n",
+ " pdb_path = pdb_id_or_file\n",
+ " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
+ " else:\n",
+ " pdb_id = pdb_id_or_file\n",
+ " pdb_path = fetch_pdb(pdb_id)\n",
+ " \n",
+ " if not pdb_path:\n",
+ " return \"Failed to fetch PDB file\", None, None\n",
+ " \n",
+ " # Determine the file format and choose the appropriate parser\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
+ " \n",
+ " try:\n",
+ " # Parse the structure file\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " except Exception as e:\n",
+ " return f\"Error parsing structure file: {e}\", None, None\n",
+ " \n",
+ " # Extract the specified chain\n",
+ " try:\n",
+ " chain = structure[0][segment]\n",
+ " except KeyError:\n",
+ " return \"Invalid Chain ID\", None, None\n",
+ " \n",
+ " protein_residues = [res for res in chain if is_aa(res)]\n",
+ " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
+ " sequence_id = [res.id[1] for res in protein_residues]\n",
+ " \n",
+ " scores = np.random.rand(len(sequence))\n",
+ " normalized_scores = normalize_scores(scores)\n",
+ " \n",
+ " # Zip residues with scores to track the residue ID and score\n",
+ " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
+ "\n",
+ " # More granular scoring for visualization\n",
+ " def score_to_color(score):\n",
+ " if score <= 0.6:\n",
+ " return \"blue\"\n",
+ " elif score <= 0.7:\n",
+ " return \"lightblue\"\n",
+ " elif score <= 0.8:\n",
+ " return \"white\"\n",
+ " elif score <= 0.9:\n",
+ " return \"orange\"\n",
+ " elif score > 0.9:\n",
+ " return \"red\"\n",
+ "\n",
+ " color_map = {resi: score_to_color(score) for resi, score in residue_scores}\n",
+ " \n",
+ " # Identify high scoring residues (> 0.7)\n",
+ " high_score_residues = [resi for resi, score in residue_scores if score > 0.7]\n",
+ " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.7]\n",
+ "\n",
+ " # Calculate geometric center of high-scoring residues\n",
+ " geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n",
+ "\n",
+ " # Preparing the result: only print high scoring residues\n",
+ " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\n\"\n",
+ " result_str += \"High-scoring Residues (Score > 0.7):\\n\"\n",
+ " result_str += \"\\n\".join([\n",
+ " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
+ " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n",
+ " ])\n",
+ " \n",
+ " # Create chain-specific PDB with scores in B-factor\n",
+ " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n",
+ "\n",
+ " # Molecule visualization with updated script with color mapping\n",
+ " mol_vis = molecule(pdb_path, residue_scores, segment) #, color_map)\n",
+ "\n",
+ " # Improved PyMOL command suggestions\n",
+ " pymol_commands = f\"\"\"\n",
+ "# PyMOL Visualization Commands\n",
+ "load {os.path.abspath(pdb_path)}, protein\n",
+ "hide everything, all\n",
+ "show cartoon, chain {segment}\n",
+ "color white, chain {segment}\n",
+ "\"\"\"\n",
+ " \n",
+ " # Color specific residues\n",
+ " for score_range, color in [\n",
+ " (high_score_residues, \"red\"), \n",
+ " (mid_score_residues, \"orange\")\n",
+ " ]:\n",
+ " if score_range:\n",
+ " resi_list = '+'.join(map(str, score_range))\n",
+ " pymol_commands += f\"\"\"\n",
+ "select high_score_residues, resi {resi_list} and chain {segment}\n",
+ "show sticks, high_score_residues\n",
+ "color {color}, high_score_residues\n",
+ "\"\"\"\n",
+ " \n",
+ " return result_str, mol_vis, [scored_pdb]\n",
+ "\n",
+ "def molecule(input_pdb, residue_scores=None, segment='A'):\n",
+ " mol = read_mol(input_pdb) # Read PDB file content\n",
+ "\n",
+ " # Prepare high-scoring residues script if scores are provided\n",
+ " high_score_script = \"\"\n",
+ " if residue_scores is not None:\n",
+ " # Filter residues based on their scores\n",
+ " high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
+ " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
+ " \n",
+ " high_score_script = \"\"\"\n",
+ " // Load the original model and apply white cartoon style\n",
+ " let chainModel = viewer.addModel(pdb, \"pdb\");\n",
+ " chainModel.setStyle({}, {});\n",
+ " chainModel.setStyle(\n",
+ " {\"chain\": \"%s\"}, \n",
+ " {\"cartoon\": {\"color\": \"white\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let highScoreModel = viewer.addModel(pdb, \"pdb\");\n",
+ " highScoreModel.setStyle({}, {});\n",
+ " highScoreModel.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"red\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for medium-scoring residues and apply orange sticks style\n",
+ " let midScoreModel = viewer.addModel(pdb, \"pdb\");\n",
+ " midScoreModel.setStyle({}, {});\n",
+ " midScoreModel.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"orange\"}}\n",
+ " );\n",
+ " \"\"\" % (\n",
+ " segment,\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in high_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in mid_score_residues)\n",
+ " )\n",
+ " \n",
+ " # Generate the full HTML content\n",
+ " html_content = f\"\"\"\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \"\"\"\n",
+ " \n",
+ " # Return the HTML content within an iframe safely encoded for special characters\n",
+ " return f''\n",
+ "\n",
+ "# Gradio UI\n",
+ "with gr.Blocks() as demo:\n",
+ " gr.Markdown(\"# Protein Binding Site Prediction\")\n",
+ " \n",
+ " with gr.Row():\n",
+ " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
+ " visualize_btn = gr.Button(\"Visualize Structure\")\n",
+ "\n",
+ " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
+ " {\n",
+ " \"model\": 0,\n",
+ " \"style\": \"cartoon\",\n",
+ " \"color\": \"whiteCarbon\",\n",
+ " \"residue_range\": \"\",\n",
+ " \"around\": 0,\n",
+ " \"byres\": False,\n",
+ " }\n",
+ " ])\n",
+ "\n",
+ " with gr.Row():\n",
+ " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
+ " prediction_btn = gr.Button(\"Predict Binding Site\")\n",
+ "\n",
+ " molecule_output = gr.HTML(label=\"Protein Structure\")\n",
+ " predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
+ " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
+ " \n",
+ " prediction_btn.click(\n",
+ " process_pdb, \n",
+ " inputs=[\n",
+ " pdb_input, \n",
+ " segment_input\n",
+ " ], \n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ " visualize_btn.click(\n",
+ " fetch_pdb, \n",
+ " inputs=[pdb_input], \n",
+ " outputs=molecule_output2\n",
+ " )\n",
+ "\n",
+ " gr.Markdown(\"## Examples\")\n",
+ " gr.Examples(\n",
+ " examples=[\n",
+ " [\"7RPZ\", \"A\"],\n",
+ " [\"2IWI\", \"B\"],\n",
+ " [\"2F6V\", \"A\"]\n",
+ " ],\n",
+ " inputs=[pdb_input, segment_input],\n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ "demo.launch(share=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "d0d50415-1304-462d-a176-b58f394e79b2",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "* Running on local URL: http://127.0.0.1:7866\n",
+ "* Running on public URL: https://a9ff499df0a5f7be8c.gradio.live\n",
+ "\n",
+ "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": []
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from datetime import datetime\n",
+ "import gradio as gr\n",
+ "import requests\n",
+ "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
+ "from Bio.PDB.Polypeptide import is_aa\n",
+ "from Bio.SeqUtils import seq1\n",
+ "from Bio.PDB import Select\n",
+ "from typing import Optional, Tuple\n",
+ "import numpy as np\n",
+ "import os\n",
+ "from gradio_molecule3d import Molecule3D\n",
+ "\n",
+ "import re\n",
+ "import pandas as pd\n",
+ "import copy\n",
+ "\n",
+ "from scipy.special import expit\n",
+ "\n",
+ "def normalize_scores(scores):\n",
+ " min_score = np.min(scores)\n",
+ " max_score = np.max(scores)\n",
+ " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
+ "\n",
+ "def read_mol(pdb_path):\n",
+ " \"\"\"Read PDB file and return its content as a string\"\"\"\n",
+ " with open(pdb_path, 'r') as f:\n",
+ " return f.read()\n",
+ "\n",
+ "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
+ " If a structure file already exists locally, it uses that.\n",
+ " \"\"\"\n",
+ " file_path = download_structure(pdb_id, output_dir)\n",
+ " if file_path:\n",
+ " return file_path\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Attempt to download the structure file in CIF or PDB format.\n",
+ " Returns the path to the downloaded file, or None if download fails.\n",
+ " \"\"\"\n",
+ " for ext in ['.cif', '.pdb']:\n",
+ " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
+ " if os.path.exists(file_path):\n",
+ " return file_path\n",
+ " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
+ " try:\n",
+ " response = requests.get(url, timeout=10)\n",
+ " if response.status_code == 200:\n",
+ " with open(file_path, 'wb') as f:\n",
+ " f.write(response.content)\n",
+ " return file_path\n",
+ " except Exception as e:\n",
+ " print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
+ " return None\n",
+ "\n",
+ "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
+ " \"\"\"\n",
+ " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
+ " \"\"\"\n",
+ " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
+ " parser = MMCIFParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', cif_path)\n",
+ " io = PDBIO()\n",
+ " io.set_structure(structure)\n",
+ " io.save(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def fetch_pdb(pdb_id):\n",
+ " pdb_path = fetch_structure(pdb_id)\n",
+ " if not pdb_path:\n",
+ " return None\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " if ext == '.cif':\n",
+ " pdb_path = convert_cif_to_pdb(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n",
+ " \"\"\"\n",
+ " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n",
+ " \"\"\"\n",
+ " # Read the original PDB file\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', input_pdb)\n",
+ " \n",
+ " # Prepare a new structure with only the specified chain and selected residues\n",
+ " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
+ " \n",
+ " # Create scores dictionary for easy lookup\n",
+ " scores_dict = {resi: score for resi, score in residue_scores}\n",
+ "\n",
+ " # Create a custom Select class\n",
+ " class ResidueSelector(Select):\n",
+ " def __init__(self, chain_id, selected_residues, scores_dict):\n",
+ " self.chain_id = chain_id\n",
+ " self.selected_residues = selected_residues\n",
+ " self.scores_dict = scores_dict\n",
+ " \n",
+ " def accept_chain(self, chain):\n",
+ " return chain.id == self.chain_id\n",
+ " \n",
+ " def accept_residue(self, residue):\n",
+ " return residue.id[1] in self.selected_residues\n",
+ "\n",
+ " def accept_atom(self, atom):\n",
+ " if atom.parent.id[1] in self.scores_dict:\n",
+ " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n",
+ " return True\n",
+ "\n",
+ " # Prepare output PDB with selected chain and residues, modified B-factors\n",
+ " io = PDBIO()\n",
+ " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n",
+ " \n",
+ " io.set_structure(structure[0])\n",
+ " io.save(output_pdb, selector)\n",
+ " \n",
+ " return output_pdb\n",
+ "\n",
+ "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
+ " \"\"\"\n",
+ " Calculate the geometric center of high-scoring residues\n",
+ " \"\"\"\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " \n",
+ " # Collect coordinates of CA atoms from high-scoring residues\n",
+ " coords = []\n",
+ " for model in structure:\n",
+ " for chain in model:\n",
+ " if chain.id == chain_id:\n",
+ " for residue in chain:\n",
+ " if residue.id[1] in high_score_residues:\n",
+ " if 'CA' in residue: # Use alpha carbon as representative\n",
+ " ca_atom = residue['CA']\n",
+ " coords.append(ca_atom.coord)\n",
+ " \n",
+ " # Calculate geometric center\n",
+ " if coords:\n",
+ " center = np.mean(coords, axis=0)\n",
+ " return center\n",
+ " return None\n",
+ "\n",
+ "def process_pdb(pdb_id_or_file, segment):\n",
+ " # Determine if input is a PDB ID or file path\n",
+ " if pdb_id_or_file.endswith('.pdb'):\n",
+ " pdb_path = pdb_id_or_file\n",
+ " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
+ " else:\n",
+ " pdb_id = pdb_id_or_file\n",
+ " pdb_path = fetch_pdb(pdb_id)\n",
+ " \n",
+ " if not pdb_path:\n",
+ " return \"Failed to fetch PDB file\", None, None\n",
+ " \n",
+ " # Determine the file format and choose the appropriate parser\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
+ " \n",
+ " try:\n",
+ " # Parse the structure file\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " except Exception as e:\n",
+ " return f\"Error parsing structure file: {e}\", None, None\n",
+ " \n",
+ " # Extract the specified chain\n",
+ " try:\n",
+ " chain = structure[0][segment]\n",
+ " except KeyError:\n",
+ " return \"Invalid Chain ID\", None, None\n",
+ " \n",
+ " protein_residues = [res for res in chain if is_aa(res)]\n",
+ " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
+ " sequence_id = [res.id[1] for res in protein_residues]\n",
+ " \n",
+ " scores = np.random.rand(len(sequence))\n",
+ " normalized_scores = normalize_scores(scores)\n",
+ " \n",
+ " # Zip residues with scores to track the residue ID and score\n",
+ " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
+ "\n",
+ " # More granular scoring for visualization\n",
+ " def score_to_color(score):\n",
+ " if score <= 0.6:\n",
+ " return \"blue\"\n",
+ " elif score <= 0.7:\n",
+ " return \"lightblue\"\n",
+ " elif score <= 0.8:\n",
+ " return \"white\"\n",
+ " elif score <= 0.9:\n",
+ " return \"orange\"\n",
+ " elif score > 0.9:\n",
+ " return \"red\"\n",
+ "\n",
+ " color_map = {resi: score_to_color(score) for resi, score in residue_scores}\n",
+ " \n",
+ " # Identify high scoring residues (> 0.7)\n",
+ " high_score_residues = [resi for resi, score in residue_scores if score > 0.7]\n",
+ " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.7]\n",
+ "\n",
+ " # Calculate geometric center of high-scoring residues\n",
+ " geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n",
+ "\n",
+ " # Preparing the result: only print high scoring residues\n",
+ " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\n\"\n",
+ " result_str += \"High-scoring Residues (Score > 0.7):\\n\"\n",
+ " result_str += \"\\n\".join([\n",
+ " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
+ " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n",
+ " ])\n",
+ "\n",
+ " # Create prediction and scored PDB files\n",
+ " prediction_file = f\"{pdb_id}_predictions.txt\"\n",
+ " with open(prediction_file, \"w\") as f:\n",
+ " f.write(result_str)\n",
+ " \n",
+ " # Create chain-specific PDB with scores in B-factor\n",
+ " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n",
+ "\n",
+ " # Molecule visualization with updated script with color mapping\n",
+ " mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)\n",
+ "\n",
+ " # Improved PyMOL command suggestions\n",
+ " pymol_commands = f\"\"\"\n",
+ "# PyMOL Visualization Commands\n",
+ "load {os.path.abspath(pdb_path)}, protein\n",
+ "hide everything, all\n",
+ "show cartoon, chain {segment}\n",
+ "color white, chain {segment}\n",
+ "\"\"\"\n",
+ " \n",
+ " # Color specific residues\n",
+ " for score_range, color in [\n",
+ " (high_score_residues, \"red\"), \n",
+ " (mid_score_residues, \"orange\")\n",
+ " ]:\n",
+ " if score_range:\n",
+ " resi_list = '+'.join(map(str, score_range))\n",
+ " pymol_commands += f\"\"\"\n",
+ "select high_score_residues, resi {resi_list} and chain {segment}\n",
+ "show sticks, high_score_residues\n",
+ "color {color}, high_score_residues\n",
+ "\"\"\"\n",
+ " \n",
+ " return result_str, mol_vis, [prediction_file,scored_pdb]\n",
+ "\n",
+ "def molecule(input_pdb, residue_scores=None, segment='A'):\n",
+ " mol = read_mol(input_pdb) # Read PDB file content\n",
+ "\n",
+ " # Prepare high-scoring residues script if scores are provided\n",
+ " high_score_script = \"\"\n",
+ " if residue_scores is not None:\n",
+ " # Filter residues based on their scores\n",
+ " high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
+ " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
+ " \n",
+ " high_score_script = \"\"\"\n",
+ " // Load the original model and apply white cartoon style\n",
+ " let chainModel = viewer.addModel(pdb, \"pdb\");\n",
+ " chainModel.setStyle({}, {});\n",
+ " chainModel.setStyle(\n",
+ " {\"chain\": \"%s\"}, \n",
+ " {\"cartoon\": {\"color\": \"white\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let highScoreModel = viewer.addModel(pdb, \"pdb\");\n",
+ " highScoreModel.setStyle({}, {});\n",
+ " highScoreModel.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"red\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for medium-scoring residues and apply orange sticks style\n",
+ " let midScoreModel = viewer.addModel(pdb, \"pdb\");\n",
+ " midScoreModel.setStyle({}, {});\n",
+ " midScoreModel.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"orange\"}}\n",
+ " );\n",
+ " \"\"\" % (\n",
+ " segment,\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in high_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in mid_score_residues)\n",
+ " )\n",
+ " \n",
+ " # Generate the full HTML content\n",
+ " html_content = f\"\"\"\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \"\"\"\n",
+ " \n",
+ " # Return the HTML content within an iframe safely encoded for special characters\n",
+ " return f''\n",
+ "\n",
+ "# Gradio UI\n",
+ "with gr.Blocks() as demo:\n",
+ " gr.Markdown(\"# Protein Binding Site Prediction\")\n",
+ " \n",
+ " with gr.Row():\n",
+ " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
+ " visualize_btn = gr.Button(\"Visualize Structure\")\n",
+ "\n",
+ " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
+ " {\n",
+ " \"model\": 0,\n",
+ " \"style\": \"cartoon\",\n",
+ " \"color\": \"whiteCarbon\",\n",
+ " \"residue_range\": \"\",\n",
+ " \"around\": 0,\n",
+ " \"byres\": False,\n",
+ " }\n",
+ " ])\n",
+ "\n",
+ " with gr.Row():\n",
+ " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
+ " prediction_btn = gr.Button(\"Predict Binding Site\")\n",
+ "\n",
+ " molecule_output = gr.HTML(label=\"Protein Structure\")\n",
+ " predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
+ " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
+ " \n",
+ " prediction_btn.click(\n",
+ " process_pdb, \n",
+ " inputs=[\n",
+ " pdb_input, \n",
+ " segment_input\n",
+ " ], \n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ " visualize_btn.click(\n",
+ " fetch_pdb, \n",
+ " inputs=[pdb_input], \n",
+ " outputs=molecule_output2\n",
+ " )\n",
+ "\n",
+ " gr.Markdown(\"## Examples\")\n",
+ " gr.Examples(\n",
+ " examples=[\n",
+ " [\"7RPZ\", \"A\"],\n",
+ " [\"2IWI\", \"B\"],\n",
+ " [\"2F6V\", \"A\"]\n",
+ " ],\n",
+ " inputs=[pdb_input, segment_input],\n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ "demo.launch(share=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "id": "004ab20c-5273-44b9-bc69-d41f236296e4",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "* Running on local URL: http://127.0.0.1:7890\n",
+ "* Running on public URL: https://a7f63d297aa65a70de.gradio.live\n",
+ "\n",
+ "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": []
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from datetime import datetime\n",
+ "import gradio as gr\n",
+ "import requests\n",
+ "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
+ "from Bio.PDB.Polypeptide import is_aa\n",
+ "from Bio.SeqUtils import seq1\n",
+ "from Bio.PDB import Select\n",
+ "from typing import Optional, Tuple\n",
+ "import numpy as np\n",
+ "import os\n",
+ "from gradio_molecule3d import Molecule3D\n",
+ "\n",
+ "import re\n",
+ "import pandas as pd\n",
+ "import copy\n",
+ "\n",
+ "from scipy.special import expit\n",
+ "\n",
+ "def normalize_scores(scores):\n",
+ " min_score = np.min(scores)\n",
+ " max_score = np.max(scores)\n",
+ " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
+ "\n",
+ "def read_mol(pdb_path):\n",
+ " \"\"\"Read PDB file and return its content as a string\"\"\"\n",
+ " with open(pdb_path, 'r') as f:\n",
+ " return f.read()\n",
+ "\n",
+ "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
+ " If a structure file already exists locally, it uses that.\n",
+ " \"\"\"\n",
+ " file_path = download_structure(pdb_id, output_dir)\n",
+ " if file_path:\n",
+ " return file_path\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Attempt to download the structure file in CIF or PDB format.\n",
+ " Returns the path to the downloaded file, or None if download fails.\n",
+ " \"\"\"\n",
+ " for ext in ['.cif', '.pdb']:\n",
+ " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
+ " if os.path.exists(file_path):\n",
+ " return file_path\n",
+ " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
+ " try:\n",
+ " response = requests.get(url, timeout=10)\n",
+ " if response.status_code == 200:\n",
+ " with open(file_path, 'wb') as f:\n",
+ " f.write(response.content)\n",
+ " return file_path\n",
+ " except Exception as e:\n",
+ " print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
+ " return None\n",
+ "\n",
+ "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
+ " \"\"\"\n",
+ " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
+ " \"\"\"\n",
+ " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
+ " parser = MMCIFParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', cif_path)\n",
+ " io = PDBIO()\n",
+ " io.set_structure(structure)\n",
+ " io.save(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def fetch_pdb(pdb_id):\n",
+ " pdb_path = fetch_structure(pdb_id)\n",
+ " if not pdb_path:\n",
+ " return None\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " if ext == '.cif':\n",
+ " pdb_path = convert_cif_to_pdb(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n",
+ " \"\"\"\n",
+ " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n",
+ " \"\"\"\n",
+ " # Read the original PDB file\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', input_pdb)\n",
+ " \n",
+ " # Prepare a new structure with only the specified chain and selected residues\n",
+ " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n",
+ " \n",
+ " # Create scores dictionary for easy lookup\n",
+ " scores_dict = {resi: score for resi, score in residue_scores}\n",
+ "\n",
+ " # Create a custom Select class\n",
+ " class ResidueSelector(Select):\n",
+ " def __init__(self, chain_id, selected_residues, scores_dict):\n",
+ " self.chain_id = chain_id\n",
+ " self.selected_residues = selected_residues\n",
+ " self.scores_dict = scores_dict\n",
+ " \n",
+ " def accept_chain(self, chain):\n",
+ " return chain.id == self.chain_id\n",
+ " \n",
+ " def accept_residue(self, residue):\n",
+ " return residue.id[1] in self.selected_residues\n",
+ "\n",
+ " def accept_atom(self, atom):\n",
+ " if atom.parent.id[1] in self.scores_dict:\n",
+ " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n",
+ " return True\n",
+ "\n",
+ " # Prepare output PDB with selected chain and residues, modified B-factors\n",
+ " io = PDBIO()\n",
+ " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n",
+ " \n",
+ " io.set_structure(structure[0])\n",
+ " io.save(output_pdb, selector)\n",
+ " \n",
+ " return output_pdb\n",
+ "\n",
+ "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
+ " \"\"\"\n",
+ " Calculate the geometric center of high-scoring residues\n",
+ " \"\"\"\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " \n",
+ " # Collect coordinates of CA atoms from high-scoring residues\n",
+ " coords = []\n",
+ " for model in structure:\n",
+ " for chain in model:\n",
+ " if chain.id == chain_id:\n",
+ " for residue in chain:\n",
+ " if residue.id[1] in high_score_residues:\n",
+ " if 'CA' in residue: # Use alpha carbon as representative\n",
+ " ca_atom = residue['CA']\n",
+ " coords.append(ca_atom.coord)\n",
+ " \n",
+ " # Calculate geometric center\n",
+ " if coords:\n",
+ " center = np.mean(coords, axis=0)\n",
+ " return center\n",
+ " return None\n",
+ "\n",
+ "def process_pdb(pdb_id_or_file, segment):\n",
+ " # Determine if input is a PDB ID or file path\n",
+ " if pdb_id_or_file.endswith('.pdb'):\n",
+ " pdb_path = pdb_id_or_file\n",
+ " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
+ " else:\n",
+ " pdb_id = pdb_id_or_file\n",
+ " pdb_path = fetch_pdb(pdb_id)\n",
+ " \n",
+ " if not pdb_path:\n",
+ " return \"Failed to fetch PDB file\", None, None\n",
+ " \n",
+ " # Determine the file format and choose the appropriate parser\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
+ " \n",
+ " try:\n",
+ " # Parse the structure file\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " except Exception as e:\n",
+ " return f\"Error parsing structure file: {e}\", None, None\n",
+ " \n",
+ " # Extract the specified chain\n",
+ " try:\n",
+ " chain = structure[0][segment]\n",
+ " except KeyError:\n",
+ " return \"Invalid Chain ID\", None, None\n",
+ " \n",
+ " protein_residues = [res for res in chain if is_aa(res)]\n",
+ " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
+ " sequence_id = [res.id[1] for res in protein_residues]\n",
+ " \n",
+ " scores = np.random.rand(len(sequence))\n",
+ " normalized_scores = normalize_scores(scores)\n",
+ " \n",
+ " # Zip residues with scores to track the residue ID and score\n",
+ " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
+ "\n",
+ " \n",
+ " # Identify high scoring residues (> 0.5)\n",
+ " high_score_residues = [resi for resi, score in residue_scores if score > 0.5]\n",
+ " \n",
+ " # Preparing the result: only print high scoring residues\n",
+ " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
+ " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
+ " result_str += \"High-scoring Residues (Score > 0.5):\\n\"\n",
+ " result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
+ " result_str += \"\\n\".join([\n",
+ " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
+ " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n",
+ " ])\n",
+ "\n",
+ " # Create chain-specific PDB with scores in B-factor\n",
+ " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n",
+ "\n",
+ " # Molecule visualization with updated script with color mapping\n",
+ " mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)\n",
+ "\n",
+ " # Improved PyMOL command suggestions\n",
+ " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
+ " pymol_commands = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
+ " \n",
+ " pymol_commands += f\"\"\"\n",
+ "# PyMOL Visualization Commands\n",
+ "load {os.path.abspath(pdb_path)}, protein\n",
+ "hide everything, all\n",
+ "show cartoon, chain {segment}\n",
+ "color white, chain {segment}\n",
+ "\"\"\"\n",
+ " \n",
+ " # Color specific residues\n",
+ " for score_range, color in [\n",
+ " (high_score_residues, \"red\")\n",
+ " ]:\n",
+ " if score_range:\n",
+ " resi_list = '+'.join(map(str, score_range))\n",
+ " pymol_commands += f\"\"\"\n",
+ "select high_score_residues, resi {resi_list} and chain {segment}\n",
+ "show sticks, high_score_residues\n",
+ "color {color}, high_score_residues\n",
+ "\"\"\"\n",
+ " # Create prediction and scored PDB files\n",
+ " prediction_file = f\"{pdb_id}_predictions.txt\"\n",
+ " with open(prediction_file, \"w\") as f:\n",
+ " f.write(result_str)\n",
+ " \n",
+ " return pymol_commands, mol_vis, [prediction_file,scored_pdb]\n",
+ "\n",
+ "def molecule(input_pdb, residue_scores=None, segment='A'):\n",
+ " # More granular scoring for visualization\n",
+ " mol = read_mol(input_pdb) # Read PDB file content\n",
+ "\n",
+ " # Prepare high-scoring residues script if scores are provided\n",
+ " high_score_script = \"\"\n",
+ " if residue_scores is not None:\n",
+ " # Filter residues based on their scores\n",
+ " class1_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.6]\n",
+ " class2_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.7]\n",
+ " class3_score_residues = [resi for resi, score in residue_scores if 0.7 < score <= 0.8]\n",
+ " class4_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]\n",
+ " class5_score_residues = [resi for resi, score in residue_scores if 0.9 < score <= 1.0]\n",
+ " \n",
+ " high_score_script = \"\"\"\n",
+ " // Load the original model and apply white cartoon style\n",
+ " let chainModel = viewer.addModel(pdb, \"pdb\");\n",
+ " chainModel.setStyle({}, {});\n",
+ " chainModel.setStyle(\n",
+ " {\"chain\": \"%s\"}, \n",
+ " {\"cartoon\": {\"color\": \"white\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class1Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class1Model.setStyle({}, {});\n",
+ " class1Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"blue\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class2Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class2Model.setStyle({}, {});\n",
+ " class2Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"lightblue\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class3Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class3Model.setStyle({}, {});\n",
+ " class3Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"white\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class4Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class4Model.setStyle({}, {});\n",
+ " class4Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"orange\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class5Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class5Model.setStyle({}, {});\n",
+ " class5Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"red\"}}\n",
+ " );\n",
+ "\n",
+ " \"\"\" % (\n",
+ " segment,\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class1_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class2_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class3_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class4_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class5_score_residues)\n",
+ " )\n",
+ " \n",
+ " # Generate the full HTML content\n",
+ " html_content = f\"\"\"\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \"\"\"\n",
+ " \n",
+ " # Return the HTML content within an iframe safely encoded for special characters\n",
+ " return f''\n",
+ "\n",
+ "# Gradio UI\n",
+ "with gr.Blocks() as demo:\n",
+ " gr.Markdown(\"# Protein Binding Site Prediction\")\n",
+ " \n",
+ " with gr.Row():\n",
+ " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
+ " visualize_btn = gr.Button(\"Visualize Structure\")\n",
+ "\n",
+ " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
+ " {\n",
+ " \"model\": 0,\n",
+ " \"style\": \"cartoon\",\n",
+ " \"color\": \"whiteCarbon\",\n",
+ " \"residue_range\": \"\",\n",
+ " \"around\": 0,\n",
+ " \"byres\": False,\n",
+ " }\n",
+ " ])\n",
+ "\n",
+ " with gr.Row():\n",
+ " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
+ " prediction_btn = gr.Button(\"Predict Binding Site\")\n",
+ "\n",
+ " molecule_output = gr.HTML(label=\"Protein Structure\")\n",
+ " predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
+ " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
+ " \n",
+ " prediction_btn.click(\n",
+ " process_pdb, \n",
+ " inputs=[\n",
+ " pdb_input, \n",
+ " segment_input\n",
+ " ], \n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ " visualize_btn.click(\n",
+ " fetch_pdb, \n",
+ " inputs=[pdb_input], \n",
+ " outputs=molecule_output2\n",
+ " )\n",
+ "\n",
+ " gr.Markdown(\"## Examples\")\n",
+ " gr.Examples(\n",
+ " examples=[\n",
+ " [\"7RPZ\", \"A\"],\n",
+ " [\"2IWI\", \"B\"],\n",
+ " [\"2F6V\", \"A\"]\n",
+ " ],\n",
+ " inputs=[pdb_input, segment_input],\n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ "demo.launch(share=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "id": "a492c5c5-e0aa-4445-9375-64cfdb963e04",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "* Running on local URL: http://127.0.0.1:7891\n",
+ "* Running on public URL: https://339346b4ad32f608d0.gradio.live\n",
+ "\n",
+ "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": []
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from datetime import datetime\n",
+ "import gradio as gr\n",
+ "import requests\n",
+ "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
+ "from Bio.PDB.Polypeptide import is_aa\n",
+ "from Bio.SeqUtils import seq1\n",
+ "from Bio.PDB import Select\n",
+ "from typing import Optional, Tuple\n",
+ "import numpy as np\n",
+ "import os\n",
+ "from gradio_molecule3d import Molecule3D\n",
+ "\n",
+ "import re\n",
+ "import pandas as pd\n",
+ "import copy\n",
+ "\n",
+ "from scipy.special import expit\n",
+ "\n",
+ "def normalize_scores(scores):\n",
+ " min_score = np.min(scores)\n",
+ " max_score = np.max(scores)\n",
+ " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
+ "\n",
+ "def read_mol(pdb_path):\n",
+ " \"\"\"Read PDB file and return its content as a string\"\"\"\n",
+ " with open(pdb_path, 'r') as f:\n",
+ " return f.read()\n",
+ "\n",
+ "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
+ " If a structure file already exists locally, it uses that.\n",
+ " \"\"\"\n",
+ " file_path = download_structure(pdb_id, output_dir)\n",
+ " if file_path:\n",
+ " return file_path\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Attempt to download the structure file in CIF or PDB format.\n",
+ " Returns the path to the downloaded file, or None if download fails.\n",
+ " \"\"\"\n",
+ " for ext in ['.cif', '.pdb']:\n",
+ " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
+ " if os.path.exists(file_path):\n",
+ " return file_path\n",
+ " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
+ " try:\n",
+ " response = requests.get(url, timeout=10)\n",
+ " if response.status_code == 200:\n",
+ " with open(file_path, 'wb') as f:\n",
+ " f.write(response.content)\n",
+ " return file_path\n",
+ " except Exception as e:\n",
+ " print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
+ " return None\n",
+ "\n",
+ "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
+ " \"\"\"\n",
+ " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
+ " \"\"\"\n",
+ " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
+ " parser = MMCIFParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', cif_path)\n",
+ " io = PDBIO()\n",
+ " io.set_structure(structure)\n",
+ " io.save(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def fetch_pdb(pdb_id):\n",
+ " pdb_path = fetch_structure(pdb_id)\n",
+ " if not pdb_path:\n",
+ " return None\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " if ext == '.cif':\n",
+ " pdb_path = convert_cif_to_pdb(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n",
+ " \"\"\"\n",
+ " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n",
+ " \"\"\"\n",
+ " # Read the original PDB file\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', input_pdb)\n",
+ " \n",
+ " # Prepare a new structure with only the specified chain and selected residues\n",
+ " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb\"\n",
+ " \n",
+ " # Create scores dictionary for easy lookup\n",
+ " scores_dict = {resi: score for resi, score in residue_scores}\n",
+ "\n",
+ " # Create a custom Select class\n",
+ " class ResidueSelector(Select):\n",
+ " def __init__(self, chain_id, selected_residues, scores_dict):\n",
+ " self.chain_id = chain_id\n",
+ " self.selected_residues = selected_residues\n",
+ " self.scores_dict = scores_dict\n",
+ " \n",
+ " def accept_chain(self, chain):\n",
+ " return chain.id == self.chain_id\n",
+ " \n",
+ " def accept_residue(self, residue):\n",
+ " return residue.id[1] in self.selected_residues\n",
+ "\n",
+ " def accept_atom(self, atom):\n",
+ " if atom.parent.id[1] in self.scores_dict:\n",
+ " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n",
+ " return True\n",
+ "\n",
+ " # Prepare output PDB with selected chain and residues, modified B-factors\n",
+ " io = PDBIO()\n",
+ " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n",
+ " \n",
+ " io.set_structure(structure[0])\n",
+ " io.save(output_pdb, selector)\n",
+ " \n",
+ " return output_pdb\n",
+ "\n",
+ "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
+ " \"\"\"\n",
+ " Calculate the geometric center of high-scoring residues\n",
+ " \"\"\"\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " \n",
+ " # Collect coordinates of CA atoms from high-scoring residues\n",
+ " coords = []\n",
+ " for model in structure:\n",
+ " for chain in model:\n",
+ " if chain.id == chain_id:\n",
+ " for residue in chain:\n",
+ " if residue.id[1] in high_score_residues:\n",
+ " if 'CA' in residue: # Use alpha carbon as representative\n",
+ " ca_atom = residue['CA']\n",
+ " coords.append(ca_atom.coord)\n",
+ " \n",
+ " # Calculate geometric center\n",
+ " if coords:\n",
+ " center = np.mean(coords, axis=0)\n",
+ " return center\n",
+ " return None\n",
+ "\n",
+ "def process_pdb(pdb_id_or_file, segment):\n",
+ " # Determine if input is a PDB ID or file path\n",
+ " if pdb_id_or_file.endswith('.pdb'):\n",
+ " pdb_path = pdb_id_or_file\n",
+ " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
+ " else:\n",
+ " pdb_id = pdb_id_or_file\n",
+ " pdb_path = fetch_pdb(pdb_id)\n",
+ " \n",
+ " if not pdb_path:\n",
+ " return \"Failed to fetch PDB file\", None, None\n",
+ " \n",
+ " # Determine the file format and choose the appropriate parser\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
+ " \n",
+ " try:\n",
+ " # Parse the structure file\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " except Exception as e:\n",
+ " return f\"Error parsing structure file: {e}\", None, None\n",
+ " \n",
+ " # Extract the specified chain\n",
+ " try:\n",
+ " chain = structure[0][segment]\n",
+ " except KeyError:\n",
+ " return \"Invalid Chain ID\", None, None\n",
+ " \n",
+ " protein_residues = [res for res in chain if is_aa(res)]\n",
+ " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
+ " sequence_id = [res.id[1] for res in protein_residues]\n",
+ " \n",
+ " scores = np.random.rand(len(sequence))\n",
+ " normalized_scores = normalize_scores(scores)\n",
+ " \n",
+ " # Zip residues with scores to track the residue ID and score\n",
+ " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
+ "\n",
+ " \n",
+ " # Identify high scoring residues (> 0.5)\n",
+ " high_score_residues = [resi for resi, score in residue_scores if score > 0.5]\n",
+ " \n",
+ " # Preparing the result: only print high scoring residues\n",
+ " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
+ " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
+ " result_str += \"High-scoring Residues (Score > 0.5):\\n\"\n",
+ " result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
+ " result_str += \"\\n\".join([\n",
+ " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
+ " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n",
+ " ])\n",
+ "\n",
+ " # Create chain-specific PDB with scores in B-factor\n",
+ " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n",
+ "\n",
+ " # Molecule visualization with updated script with color mapping\n",
+ " mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)\n",
+ "\n",
+ " # Improved PyMOL command suggestions\n",
+ " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
+ " pymol_commands = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
+ " \n",
+ " pymol_commands += f\"\"\"\n",
+ "# PyMOL Visualization Commands\n",
+ "load {os.path.abspath(pdb_path)}, protein\n",
+ "hide everything, all\n",
+ "show cartoon, chain {segment}\n",
+ "color white, chain {segment}\n",
+ "\"\"\"\n",
+ " \n",
+ " # Color specific residues\n",
+ " for score_range, color in [\n",
+ " (high_score_residues, \"red\")\n",
+ " ]:\n",
+ " if score_range:\n",
+ " resi_list = '+'.join(map(str, score_range))\n",
+ " pymol_commands += f\"\"\"\n",
+ "select high_score_residues, resi {resi_list} and chain {segment}\n",
+ "show sticks, high_score_residues\n",
+ "color {color}, high_score_residues\n",
+ "\"\"\"\n",
+ " # Create prediction and scored PDB files\n",
+ " prediction_file = f\"{pdb_id}_binding_site_residues.txt\"\n",
+ " with open(prediction_file, \"w\") as f:\n",
+ " f.write(result_str)\n",
+ " \n",
+ " return pymol_commands, mol_vis, [prediction_file,scored_pdb]\n",
+ "\n",
+ "def molecule(input_pdb, residue_scores=None, segment='A'):\n",
+ " # More granular scoring for visualization\n",
+ " mol = read_mol(input_pdb) # Read PDB file content\n",
+ "\n",
+ " # Prepare high-scoring residues script if scores are provided\n",
+ " high_score_script = \"\"\n",
+ " if residue_scores is not None:\n",
+ " # Filter residues based on their scores\n",
+ " class1_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.6]\n",
+ " class2_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.7]\n",
+ " class3_score_residues = [resi for resi, score in residue_scores if 0.7 < score <= 0.8]\n",
+ " class4_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]\n",
+ " class5_score_residues = [resi for resi, score in residue_scores if 0.9 < score <= 1.0]\n",
+ " \n",
+ " high_score_script = \"\"\"\n",
+ " // Load the original model and apply white cartoon style\n",
+ " let chainModel = viewer.addModel(pdb, \"pdb\");\n",
+ " chainModel.setStyle({}, {});\n",
+ " chainModel.setStyle(\n",
+ " {\"chain\": \"%s\"}, \n",
+ " {\"cartoon\": {\"color\": \"white\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class1Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class1Model.setStyle({}, {});\n",
+ " class1Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"blue\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class2Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class2Model.setStyle({}, {});\n",
+ " class2Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"lightblue\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class3Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class3Model.setStyle({}, {});\n",
+ " class3Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"white\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class4Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class4Model.setStyle({}, {});\n",
+ " class4Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"orange\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class5Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class5Model.setStyle({}, {});\n",
+ " class5Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"red\"}}\n",
+ " );\n",
+ "\n",
+ " \"\"\" % (\n",
+ " segment,\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class1_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class2_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class3_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class4_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class5_score_residues)\n",
+ " )\n",
+ " \n",
+ " # Generate the full HTML content\n",
+ " html_content = f\"\"\"\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \"\"\"\n",
+ " \n",
+ " # Return the HTML content within an iframe safely encoded for special characters\n",
+ " return f''\n",
+ "\n",
+ "# Gradio UI\n",
+ "with gr.Blocks() as demo:\n",
+ " gr.Markdown(\"# Protein Binding Site Prediction\")\n",
+ " \n",
+ " with gr.Row():\n",
+ " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
+ " visualize_btn = gr.Button(\"Visualize Structure\")\n",
+ "\n",
+ " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
+ " {\n",
+ " \"model\": 0,\n",
+ " \"style\": \"cartoon\",\n",
+ " \"color\": \"whiteCarbon\",\n",
+ " \"residue_range\": \"\",\n",
+ " \"around\": 0,\n",
+ " \"byres\": False,\n",
+ " }\n",
+ " ])\n",
+ "\n",
+ " with gr.Row():\n",
+ " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
+ " prediction_btn = gr.Button(\"Predict Binding Site\")\n",
+ "\n",
+ " molecule_output = gr.HTML(label=\"Protein Structure\")\n",
+ " explanation_vis = gr.Markdown(\"\"\"\n",
+ " Residues with a score > 0.5 are considered binding sites and represented as sticks with the score dependent colorcoding:\n",
+ " - 0.5-0.6: blue \n",
+ " - 0.6–0.7: light blue \n",
+ " - 0.7–0.8: white\n",
+ " - 0.8–0.9: orange\n",
+ " - 0.9–1.0: red\n",
+ " \"\"\")\n",
+ " predictions_output = gr.Textbox(label=\"Visualize Prediction with PyMol\")\n",
+ " gr.Markdown(\"### Download:\\n- List of predicted binding site residues\\n- PDB with score in beta factor column\")\n",
+ " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
+ " \n",
+ " prediction_btn.click(\n",
+ " process_pdb, \n",
+ " inputs=[\n",
+ " pdb_input, \n",
+ " segment_input\n",
+ " ], \n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ " visualize_btn.click(\n",
+ " fetch_pdb, \n",
+ " inputs=[pdb_input], \n",
+ " outputs=molecule_output2\n",
+ " )\n",
+ "\n",
+ " gr.Markdown(\"## Examples\")\n",
+ " gr.Examples(\n",
+ " examples=[\n",
+ " [\"7RPZ\", \"A\"],\n",
+ " [\"2IWI\", \"B\"],\n",
+ " [\"2F6V\", \"A\"]\n",
+ " ],\n",
+ " inputs=[pdb_input, segment_input],\n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ "demo.launch(share=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "id": "99d18e7c-3ec1-48f2-b368-958b66bb1782",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "* Running on local URL: http://127.0.0.1:7923\n",
+ "* Running on public URL: https://ad5916147a5fd9c4b5.gradio.live\n",
+ "\n",
+ "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": []
+ },
+ "execution_count": 71,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ ".cif\n",
+ "./7RPZ.pdb\n",
+ ".pdb\n",
+ "/private/var/folders/tm/ym2tckv54b96ws82y3b7cqhh0000gn/T/gradio/6b7bd3b706f978096c02bacdbf7b38529f0a5233f7570f758063b6e78f62771d/2F6V.pdb\n"
+ ]
+ }
+ ],
+ "source": [
+ "from datetime import datetime\n",
+ "import gradio as gr\n",
+ "import requests\n",
+ "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n",
+ "from Bio.PDB.Polypeptide import is_aa\n",
+ "from Bio.SeqUtils import seq1\n",
+ "from Bio.PDB import Select\n",
+ "from typing import Optional, Tuple\n",
+ "import numpy as np\n",
+ "import os\n",
+ "from gradio_molecule3d import Molecule3D\n",
+ "\n",
+ "import re\n",
+ "import pandas as pd\n",
+ "import copy\n",
+ "\n",
+ "from scipy.special import expit\n",
+ "\n",
+ "def normalize_scores(scores):\n",
+ " min_score = np.min(scores)\n",
+ " max_score = np.max(scores)\n",
+ " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
+ "\n",
+ "def read_mol(pdb_path):\n",
+ " \"\"\"Read PDB file and return its content as a string\"\"\"\n",
+ " with open(pdb_path, 'r') as f:\n",
+ " return f.read()\n",
+ "\n",
+ "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n",
+ " If a structure file already exists locally, it uses that.\n",
+ " \"\"\"\n",
+ " file_path = download_structure(pdb_id, output_dir)\n",
+ " if file_path:\n",
+ " return file_path\n",
+ " else:\n",
+ " return None\n",
+ "\n",
+ "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n",
+ " \"\"\"\n",
+ " Attempt to download the structure file in CIF or PDB format.\n",
+ " Returns the path to the downloaded file, or None if download fails.\n",
+ " \"\"\"\n",
+ " for ext in ['.cif', '.pdb']:\n",
+ " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n",
+ " if os.path.exists(file_path):\n",
+ " return file_path\n",
+ " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n",
+ " try:\n",
+ " response = requests.get(url, timeout=10)\n",
+ " if response.status_code == 200:\n",
+ " with open(file_path, 'wb') as f:\n",
+ " f.write(response.content)\n",
+ " return file_path\n",
+ " except Exception as e:\n",
+ " print(f\"Download error for {pdb_id}{ext}: {e}\")\n",
+ " return None\n",
+ "\n",
+ "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n",
+ " \"\"\"\n",
+ " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n",
+ " \"\"\"\n",
+ " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n",
+ " parser = MMCIFParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', cif_path)\n",
+ " io = PDBIO()\n",
+ " io.set_structure(structure)\n",
+ " io.save(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def fetch_pdb(pdb_id):\n",
+ " pdb_path = fetch_structure(pdb_id)\n",
+ " if not pdb_path:\n",
+ " return None\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " if ext == '.cif':\n",
+ " pdb_path = convert_cif_to_pdb(pdb_path)\n",
+ " return pdb_path\n",
+ "\n",
+ "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n",
+ " \"\"\"\n",
+ " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n",
+ " \"\"\"\n",
+ " # Read the original PDB file\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', input_pdb)\n",
+ " \n",
+ " # Prepare a new structure with only the specified chain and selected residues\n",
+ " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb\"\n",
+ " \n",
+ " # Create scores dictionary for easy lookup\n",
+ " scores_dict = {resi: score for resi, score in residue_scores}\n",
+ "\n",
+ " # Create a custom Select class\n",
+ " class ResidueSelector(Select):\n",
+ " def __init__(self, chain_id, selected_residues, scores_dict):\n",
+ " self.chain_id = chain_id\n",
+ " self.selected_residues = selected_residues\n",
+ " self.scores_dict = scores_dict\n",
+ " \n",
+ " def accept_chain(self, chain):\n",
+ " return chain.id == self.chain_id\n",
+ " \n",
+ " def accept_residue(self, residue):\n",
+ " return residue.id[1] in self.selected_residues\n",
+ "\n",
+ " def accept_atom(self, atom):\n",
+ " if atom.parent.id[1] in self.scores_dict:\n",
+ " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n",
+ " return True\n",
+ "\n",
+ " # Prepare output PDB with selected chain and residues, modified B-factors\n",
+ " io = PDBIO()\n",
+ " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n",
+ " \n",
+ " io.set_structure(structure[0])\n",
+ " io.save(output_pdb, selector)\n",
+ " \n",
+ " return output_pdb\n",
+ "\n",
+ "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n",
+ " \"\"\"\n",
+ " Calculate the geometric center of high-scoring residues\n",
+ " \"\"\"\n",
+ " parser = PDBParser(QUIET=True)\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " \n",
+ " # Collect coordinates of CA atoms from high-scoring residues\n",
+ " coords = []\n",
+ " for model in structure:\n",
+ " for chain in model:\n",
+ " if chain.id == chain_id:\n",
+ " for residue in chain:\n",
+ " if residue.id[1] in high_score_residues:\n",
+ " if 'CA' in residue: # Use alpha carbon as representative\n",
+ " ca_atom = residue['CA']\n",
+ " coords.append(ca_atom.coord)\n",
+ " \n",
+ " # Calculate geometric center\n",
+ " if coords:\n",
+ " center = np.mean(coords, axis=0)\n",
+ " return center\n",
+ " return None\n",
+ "\n",
+ "def process_pdb(pdb_id_or_file, segment):\n",
+ " # Determine if input is a PDB ID or file path\n",
+ " if pdb_id_or_file.endswith('.pdb'):\n",
+ " pdb_path = pdb_id_or_file\n",
+ " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n",
+ " else:\n",
+ " pdb_id = pdb_id_or_file\n",
+ " pdb_path = fetch_pdb(pdb_id)\n",
+ " \n",
+ " if not pdb_path:\n",
+ " return \"Failed to fetch PDB file\", None, None\n",
+ " \n",
+ " # Determine the file format and choose the appropriate parser\n",
+ " _, ext = os.path.splitext(pdb_path)\n",
+ " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n",
+ " \n",
+ " try:\n",
+ " # Parse the structure file\n",
+ " structure = parser.get_structure('protein', pdb_path)\n",
+ " except Exception as e:\n",
+ " return f\"Error parsing structure file: {e}\", None, None\n",
+ " \n",
+ " # Extract the specified chain\n",
+ " try:\n",
+ " chain = structure[0][segment]\n",
+ " except KeyError:\n",
+ " return \"Invalid Chain ID\", None, None\n",
+ " \n",
+ " protein_residues = [res for res in chain if is_aa(res)]\n",
+ " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n",
+ " sequence_id = [res.id[1] for res in protein_residues]\n",
+ " \n",
+ " scores = np.random.rand(len(sequence))\n",
+ " normalized_scores = normalize_scores(scores)\n",
+ " \n",
+ " # Zip residues with scores to track the residue ID and score\n",
+ " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n",
+ "\n",
+ " \n",
+ " # Identify high scoring residues (> 0.5)\n",
+ " high_score_residues = [resi for resi, score in residue_scores if score > 0.5]\n",
+ " \n",
+ " # Preparing the result: only print high scoring residues\n",
+ " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
+ " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
+ " result_str += \"High-scoring Residues (Score > 0.5):\\n\"\n",
+ " result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n",
+ " result_str += \"\\n\".join([\n",
+ " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
+ " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n",
+ " ])\n",
+ "\n",
+ " # Create chain-specific PDB with scores in B-factor\n",
+ " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n",
+ "\n",
+ " # Molecule visualization with updated script with color mapping\n",
+ " mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)\n",
+ "\n",
+ " # Improved PyMOL command suggestions\n",
+ " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n",
+ " pymol_commands = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n",
+ " \n",
+ " pymol_commands += f\"\"\"\n",
+ "# PyMOL Visualization Commands\n",
+ "load {os.path.abspath(pdb_path)}, protein\n",
+ "hide everything, all\n",
+ "show cartoon, chain {segment}\n",
+ "color white, chain {segment}\n",
+ "\"\"\"\n",
+ " \n",
+ " # Color specific residues\n",
+ " for score_range, color in [\n",
+ " (high_score_residues, \"red\")\n",
+ " ]:\n",
+ " if score_range:\n",
+ " resi_list = '+'.join(map(str, score_range))\n",
+ " pymol_commands += f\"\"\"\n",
+ "select high_score_residues, resi {resi_list} and chain {segment}\n",
+ "show sticks, high_score_residues\n",
+ "color {color}, high_score_residues\n",
+ "\"\"\"\n",
+ " # Create prediction and scored PDB files\n",
+ " prediction_file = f\"{pdb_id}_binding_site_residues.txt\"\n",
+ " with open(prediction_file, \"w\") as f:\n",
+ " f.write(result_str)\n",
+ " \n",
+ " return pymol_commands, mol_vis, [prediction_file,scored_pdb]\n",
+ "\n",
+ "def molecule(input_pdb, residue_scores=None, segment='A'):\n",
+ " # More granular scoring for visualization\n",
+ " mol = read_mol(input_pdb) # Read PDB file content\n",
+ "\n",
+ " # Prepare high-scoring residues script if scores are provided\n",
+ " high_score_script = \"\"\n",
+ " if residue_scores is not None:\n",
+ " # Filter residues based on their scores\n",
+ " class1_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.6]\n",
+ " class2_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.7]\n",
+ " class3_score_residues = [resi for resi, score in residue_scores if 0.7 < score <= 0.8]\n",
+ " class4_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]\n",
+ " class5_score_residues = [resi for resi, score in residue_scores if 0.9 < score <= 1.0]\n",
+ " \n",
+ " high_score_script = \"\"\"\n",
+ " // Load the original model and apply white cartoon style\n",
+ " let chainModel = viewer.addModel(pdb, \"pdb\");\n",
+ " chainModel.setStyle({}, {});\n",
+ " chainModel.setStyle(\n",
+ " {\"chain\": \"%s\"}, \n",
+ " {\"cartoon\": {\"color\": \"white\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class1Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class1Model.setStyle({}, {});\n",
+ " class1Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"blue\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class2Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class2Model.setStyle({}, {});\n",
+ " class2Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"lightblue\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class3Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class3Model.setStyle({}, {});\n",
+ " class3Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"white\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class4Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class4Model.setStyle({}, {});\n",
+ " class4Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"orange\"}}\n",
+ " );\n",
+ "\n",
+ " // Create a new model for high-scoring residues and apply red sticks style\n",
+ " let class5Model = viewer.addModel(pdb, \"pdb\");\n",
+ " class5Model.setStyle({}, {});\n",
+ " class5Model.setStyle(\n",
+ " {\"chain\": \"%s\", \"resi\": [%s]}, \n",
+ " {\"stick\": {\"color\": \"red\"}}\n",
+ " );\n",
+ "\n",
+ " \"\"\" % (\n",
+ " segment,\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class1_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class2_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class3_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class4_score_residues),\n",
+ " segment,\n",
+ " \", \".join(str(resi) for resi in class5_score_residues)\n",
+ " )\n",
+ " \n",
+ " # Generate the full HTML content\n",
+ " html_content = f\"\"\"\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \"\"\"\n",
+ " \n",
+ " # Return the HTML content within an iframe safely encoded for special characters\n",
+ " return f''\n",
+ "\n",
+ "# Gradio UI\n",
+ "with gr.Blocks() as demo:\n",
+ " gr.Markdown(\"# Protein Binding Site Prediction\")\n",
+ " \n",
+ " # Mode selection\n",
+ " mode = gr.Radio(\n",
+ " choices=[\"PDB ID\", \"Upload File\"],\n",
+ " value=\"PDB ID\",\n",
+ " label=\"Input Mode\",\n",
+ " info=\"Choose whether to input a PDB ID or upload a PDB/CIF file.\"\n",
+ " )\n",
+ "\n",
+ " # Input components based on mode\n",
+ " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
+ " pdb_file = gr.File(label=\"Upload PDB/CIF File\", visible=False)\n",
+ " visualize_btn = gr.Button(\"Visualize Structure\")\n",
+ "\n",
+ " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n",
+ " {\n",
+ " \"model\": 0,\n",
+ " \"style\": \"cartoon\",\n",
+ " \"color\": \"whiteCarbon\",\n",
+ " \"residue_range\": \"\",\n",
+ " \"around\": 0,\n",
+ " \"byres\": False,\n",
+ " }\n",
+ " ])\n",
+ "\n",
+ " with gr.Row():\n",
+ " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
+ " prediction_btn = gr.Button(\"Predict Binding Site\")\n",
+ "\n",
+ " molecule_output = gr.HTML(label=\"Protein Structure\")\n",
+ " explanation_vis = gr.Markdown(\"\"\"\n",
+ " Residues with a score > 0.5 are considered binding sites and represented as sticks with the score dependent colorcoding:\n",
+ " - 0.5-0.6: blue \n",
+ " - 0.6–0.7: light blue \n",
+ " - 0.7–0.8: white\n",
+ " - 0.8–0.9: orange\n",
+ " - 0.9–1.0: red\n",
+ " \"\"\")\n",
+ " predictions_output = gr.Textbox(label=\"Visualize Prediction with PyMol\")\n",
+ " gr.Markdown(\"### Download:\\n- List of predicted binding site residues\\n- PDB with score in beta factor column\")\n",
+ " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n",
+ " \n",
+ " def process_interface(mode, pdb_id, pdb_file, chain_id):\n",
+ " if mode == \"PDB ID\":\n",
+ " return process_pdb(pdb_id, chain_id)\n",
+ " elif mode == \"Upload File\":\n",
+ " _, ext = os.path.splitext(pdb_file.name)\n",
+ " file_path = os.path.join('./', f\"{_}{ext}\")\n",
+ " if ext == '.cif':\n",
+ " pdb_path = convert_cif_to_pdb(file_path)\n",
+ " else:\n",
+ " pdb_path= file_path\n",
+ " return process_pdb(pdb_path, chain_id)\n",
+ " else:\n",
+ " return \"Error: Invalid mode selected\", None, None\n",
+ "\n",
+ " def fetch_interface(mode, pdb_id, pdb_file):\n",
+ " if mode == \"PDB ID\":\n",
+ " return fetch_pdb(pdb_id)\n",
+ " elif mode == \"Upload File\":\n",
+ " _, ext = os.path.splitext(pdb_file.name)\n",
+ " file_path = os.path.join('./', f\"{_}{ext}\")\n",
+ " #print(ext)\n",
+ " if ext == '.cif':\n",
+ " pdb_path = convert_cif_to_pdb(file_path)\n",
+ " else:\n",
+ " pdb_path= file_path\n",
+ " #print(pdb_path)\n",
+ " return pdb_path\n",
+ " else:\n",
+ " return \"Error: Invalid mode selected\"\n",
+ "\n",
+ " def toggle_mode(selected_mode):\n",
+ " if selected_mode == \"PDB ID\":\n",
+ " return gr.update(visible=True), gr.update(visible=False)\n",
+ " else:\n",
+ " return gr.update(visible=False), gr.update(visible=True)\n",
+ "\n",
+ " mode.change(\n",
+ " toggle_mode,\n",
+ " inputs=[mode],\n",
+ " outputs=[pdb_input, pdb_file]\n",
+ " )\n",
+ "\n",
+ " prediction_btn.click(\n",
+ " process_interface, \n",
+ " inputs=[mode, pdb_input, pdb_file, segment_input], \n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ " visualize_btn.click(\n",
+ " fetch_interface, \n",
+ " inputs=[mode, pdb_input, pdb_file], \n",
+ " outputs=molecule_output2\n",
+ " )\n",
+ "\n",
+ " gr.Markdown(\"## Examples\")\n",
+ " gr.Examples(\n",
+ " examples=[\n",
+ " [\"7RPZ\", \"A\"],\n",
+ " [\"2IWI\", \"B\"],\n",
+ " [\"2F6V\", \"A\"]\n",
+ " ],\n",
+ " inputs=[pdb_input, segment_input],\n",
+ " outputs=[predictions_output, molecule_output, download_output]\n",
+ " )\n",
+ "\n",
+ "demo.launch(share=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9496cf4f-9e5f-4b0b-bb0d-7aebbb748ae6",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python (LLM)",
+ "language": "python",
+ "name": "llm"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}