ThorbenFroehlking commited on
Commit
2460e63
·
1 Parent(s): 06bab06
.ipynb_checkpoints/app-checkpoint.py CHANGED
@@ -7,7 +7,7 @@ from Bio.SeqUtils import seq1
7
  from typing import Optional, Tuple
8
  import numpy as np
9
  import os
10
- from gradio_molecule3d import Molecule3D
11
 
12
  from model_loader import load_model
13
 
@@ -533,5 +533,4 @@ with gr.Blocks(css="""
533
  outputs=[predictions_output, molecule_output, download_output]
534
  )
535
 
536
- #demo.launch(share=True)
537
- demo.launch()
 
7
  from typing import Optional, Tuple
8
  import numpy as np
9
  import os
10
+ #from gradio_molecule3d import Molecule3D
11
 
12
  from model_loader import load_model
13
 
 
533
  outputs=[predictions_output, molecule_output, download_output]
534
  )
535
 
536
+ demo.launch(share=True)
 
.ipynb_checkpoints/requirements-checkpoint.txt CHANGED
@@ -10,4 +10,5 @@ sentencepiece
10
  huggingface_hub>=0.15.0
11
  requests
12
  gradio_molecule3d
13
- biopython>=1.81
 
 
10
  huggingface_hub>=0.15.0
11
  requests
12
  gradio_molecule3d
13
+ biopython>=1.81
14
+ pydantic==1.10.13
app-Copy1.py ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+ import gradio as gr
3
+ import requests
4
+ from Bio.PDB import PDBParser, MMCIFParser, PDBIO, Select
5
+ from Bio.PDB.Polypeptide import is_aa
6
+ from Bio.SeqUtils import seq1
7
+ from typing import Optional, Tuple
8
+ import numpy as np
9
+ import os
10
+ from gradio_molecule3d import Molecule3D
11
+
12
+ from model_loader import load_model
13
+
14
+ import torch
15
+ import torch.nn as nn
16
+ import torch.nn.functional as F
17
+ from torch.utils.data import DataLoader
18
+
19
+ import re
20
+ import pandas as pd
21
+ import copy
22
+
23
+ import transformers
24
+ from transformers import AutoTokenizer, DataCollatorForTokenClassification
25
+
26
+ from datasets import Dataset
27
+
28
+ from scipy.special import expit
29
+
30
+
31
+ # Load model and move to device
32
+ #checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
33
+ #checkpoint = 'ThorbenF/prot_t5_xl_uniref50_cryptic'
34
+ checkpoint = 'ThorbenF/prot_t5_xl_uniref50_database'
35
+ max_length = 1500
36
+ model, tokenizer = load_model(checkpoint, max_length)
37
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
38
+ model.to(device)
39
+ model.eval()
40
+
41
+ def normalize_scores(scores):
42
+ min_score = np.min(scores)
43
+ max_score = np.max(scores)
44
+ return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
45
+
46
+ def read_mol(pdb_path):
47
+ """Read PDB file and return its content as a string"""
48
+ with open(pdb_path, 'r') as f:
49
+ return f.read()
50
+
51
+ def fetch_structure(pdb_id: str, output_dir: str = ".") -> Optional[str]:
52
+ """
53
+ Fetch the structure file for a given PDB ID. Prioritizes CIF files.
54
+ If a structure file already exists locally, it uses that.
55
+ """
56
+ file_path = download_structure(pdb_id, output_dir)
57
+ if file_path:
58
+ return file_path
59
+ else:
60
+ return None
61
+
62
+ def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:
63
+ """
64
+ Attempt to download the structure file in CIF or PDB format.
65
+ Returns the path to the downloaded file, or None if download fails.
66
+ """
67
+ for ext in ['.cif', '.pdb']:
68
+ file_path = os.path.join(output_dir, f"{pdb_id}{ext}")
69
+ if os.path.exists(file_path):
70
+ return file_path
71
+ url = f"https://files.rcsb.org/download/{pdb_id}{ext}"
72
+ try:
73
+ response = requests.get(url, timeout=10)
74
+ if response.status_code == 200:
75
+ with open(file_path, 'wb') as f:
76
+ f.write(response.content)
77
+ return file_path
78
+ except Exception as e:
79
+ print(f"Download error for {pdb_id}{ext}: {e}")
80
+ return None
81
+
82
+ def convert_cif_to_pdb(cif_path: str, output_dir: str = ".") -> str:
83
+ """
84
+ Convert a CIF file to PDB format using BioPython and return the PDB file path.
85
+ """
86
+ pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))
87
+ parser = MMCIFParser(QUIET=True)
88
+ structure = parser.get_structure('protein', cif_path)
89
+ io = PDBIO()
90
+ io.set_structure(structure)
91
+ io.save(pdb_path)
92
+ return pdb_path
93
+
94
+ def fetch_pdb(pdb_id):
95
+ pdb_path = fetch_structure(pdb_id)
96
+ if not pdb_path:
97
+ return None
98
+ _, ext = os.path.splitext(pdb_path)
99
+ if ext == '.cif':
100
+ pdb_path = convert_cif_to_pdb(pdb_path)
101
+ return pdb_path
102
+
103
+ def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:
104
+ """
105
+ Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores
106
+ """
107
+ # Read the original PDB file
108
+ parser = PDBParser(QUIET=True)
109
+ structure = parser.get_structure('protein', input_pdb)
110
+
111
+ # Prepare a new structure with only the specified chain and selected residues
112
+ output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb"
113
+
114
+ # Create scores dictionary for easy lookup
115
+ scores_dict = {resi: score for resi, score in residue_scores}
116
+
117
+ # Create a custom Select class
118
+ class ResidueSelector(Select):
119
+ def __init__(self, chain_id, selected_residues, scores_dict):
120
+ self.chain_id = chain_id
121
+ self.selected_residues = selected_residues
122
+ self.scores_dict = scores_dict
123
+
124
+ def accept_chain(self, chain):
125
+ return chain.id == self.chain_id
126
+
127
+ def accept_residue(self, residue):
128
+ return residue.id[1] in self.selected_residues
129
+
130
+ def accept_atom(self, atom):
131
+ if atom.parent.id[1] in self.scores_dict:
132
+ atom.bfactor = np.absolute(1-self.scores_dict[atom.parent.id[1]]) * 100
133
+ return True
134
+
135
+ # Prepare output PDB with selected chain and residues, modified B-factors
136
+ io = PDBIO()
137
+ selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)
138
+
139
+ io.set_structure(structure[0])
140
+ io.save(output_pdb, selector)
141
+
142
+ return output_pdb
143
+
144
+ def process_pdb(pdb_id_or_file, segment):
145
+ # Determine if input is a PDB ID or file path
146
+ if pdb_id_or_file.endswith('.pdb'):
147
+ pdb_path = pdb_id_or_file
148
+ pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]
149
+ else:
150
+ pdb_id = pdb_id_or_file
151
+ pdb_path = fetch_pdb(pdb_id)
152
+
153
+ if not pdb_path:
154
+ return "Failed to fetch PDB file", None, None
155
+
156
+ # Determine the file format and choose the appropriate parser
157
+ _, ext = os.path.splitext(pdb_path)
158
+ parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)
159
+
160
+ try:
161
+ # Parse the structure file
162
+ structure = parser.get_structure('protein', pdb_path)
163
+ except Exception as e:
164
+ return f"Error parsing structure file: {e}", None, None
165
+
166
+ # Extract the specified chain
167
+ try:
168
+ chain = structure[0][segment]
169
+ except KeyError:
170
+ return "Invalid Chain ID", None, None
171
+
172
+ protein_residues = [res for res in chain if is_aa(res)]
173
+ sequence = "".join(seq1(res.resname) for res in protein_residues)
174
+ sequence_id = [res.id[1] for res in protein_residues]
175
+
176
+ visualized_sequence = "".join(seq1(res.resname) for res in protein_residues)
177
+ if sequence != visualized_sequence:
178
+ raise ValueError("The visualized sequence does not match the prediction sequence")
179
+
180
+ input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
181
+ with torch.no_grad():
182
+ outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
183
+
184
+ # Calculate scores and normalize them
185
+ scores = expit(outputs[:, 1] - outputs[:, 0])
186
+
187
+ normalized_scores = normalize_scores(scores)
188
+
189
+ # Zip residues with scores to track the residue ID and score
190
+ residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]
191
+
192
+
193
+ # Define the score brackets
194
+ score_brackets = {
195
+ "0.0-0.2": (0.0, 0.2),
196
+ "0.2-0.4": (0.2, 0.4),
197
+ "0.4-0.6": (0.4, 0.6),
198
+ "0.6-0.8": (0.6, 0.8),
199
+ "0.8-1.0": (0.8, 1.0)
200
+ }
201
+
202
+ # Initialize a dictionary to store residues by bracket
203
+ residues_by_bracket = {bracket: [] for bracket in score_brackets}
204
+
205
+ # Categorize residues into brackets
206
+ for resi, score in residue_scores:
207
+ for bracket, (lower, upper) in score_brackets.items():
208
+ if lower <= score < upper:
209
+ residues_by_bracket[bracket].append(resi)
210
+ break
211
+
212
+ # Preparing the result string
213
+ current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
214
+ result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
215
+ result_str += "Residues by Score Brackets:\n\n"
216
+
217
+ # Add residues for each bracket
218
+ for bracket, residues in residues_by_bracket.items():
219
+ result_str += f"Bracket {bracket}:\n"
220
+ result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n"
221
+ result_str += "\n".join([
222
+ f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
223
+ for i, res in enumerate(protein_residues) if res.id[1] in residues
224
+ ])
225
+ result_str += "\n\n"
226
+
227
+ # Create chain-specific PDB with scores in B-factor
228
+ scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)
229
+
230
+ # Molecule visualization with updated script with color mapping
231
+ mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)
232
+
233
+ # Improved PyMOL command suggestions
234
+ current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
235
+ pymol_commands = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
236
+
237
+ pymol_commands += f"""
238
+ # PyMOL Visualization Commands
239
+ load {os.path.abspath(pdb_path)}, protein
240
+ hide everything, all
241
+ show cartoon, chain {segment}
242
+ color white, chain {segment}
243
+ """
244
+
245
+ # Define colors for each score bracket
246
+ bracket_colors = {
247
+ "0.0-0.2": "white",
248
+ "0.2-0.4": "lightorange",
249
+ "0.4-0.6": "orange",
250
+ "0.6-0.8": "orangered",
251
+ "0.8-1.0": "red"
252
+ }
253
+
254
+ # Add PyMOL commands for each score bracket
255
+ for bracket, residues in residues_by_bracket.items():
256
+ if residues: # Only add commands if there are residues in this bracket
257
+ color = bracket_colors[bracket]
258
+ resi_list = '+'.join(map(str, residues))
259
+ pymol_commands += f"""
260
+ select bracket_{bracket.replace('.', '').replace('-', '_')}, resi {resi_list} and chain {segment}
261
+ show sticks, bracket_{bracket.replace('.', '').replace('-', '_')}
262
+ color {color}, bracket_{bracket.replace('.', '').replace('-', '_')}
263
+ """
264
+ # Create prediction and scored PDB files
265
+ prediction_file = f"{pdb_id}_binding_site_residues.txt"
266
+ with open(prediction_file, "w") as f:
267
+ f.write(result_str)
268
+
269
+ return pymol_commands, mol_vis, [prediction_file,scored_pdb]
270
+
271
+ def molecule(input_pdb, residue_scores=None, segment='A'):
272
+ # More granular scoring for visualization
273
+ mol = read_mol(input_pdb) # Read PDB file content
274
+
275
+ # Prepare high-scoring residues script if scores are provided
276
+ high_score_script = ""
277
+ if residue_scores is not None:
278
+ # Filter residues based on their scores
279
+ class1_score_residues = [resi for resi, score in residue_scores if 0.0 < score <= 0.2]
280
+ class2_score_residues = [resi for resi, score in residue_scores if 0.2 < score <= 0.4]
281
+ class3_score_residues = [resi for resi, score in residue_scores if 0.4 < score <= 0.6]
282
+ class4_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.8]
283
+ class5_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 1.0]
284
+
285
+ high_score_script = """
286
+ // Load the original model and apply white cartoon style
287
+ let chainModel = viewer.addModel(pdb, "pdb");
288
+ chainModel.setStyle({}, {});
289
+ chainModel.setStyle(
290
+ {"chain": "%s"},
291
+ {"cartoon": {"color": "white"}}
292
+ );
293
+
294
+ // Create a new model for high-scoring residues and apply red sticks style
295
+ let class1Model = viewer.addModel(pdb, "pdb");
296
+ class1Model.setStyle({}, {});
297
+ class1Model.setStyle(
298
+ {"chain": "%s", "resi": [%s]},
299
+ {"stick": {"color": "0xFFFFFF", "opacity": 0.5}}
300
+ );
301
+
302
+ // Create a new model for high-scoring residues and apply red sticks style
303
+ let class2Model = viewer.addModel(pdb, "pdb");
304
+ class2Model.setStyle({}, {});
305
+ class2Model.setStyle(
306
+ {"chain": "%s", "resi": [%s]},
307
+ {"stick": {"color": "0xFFD580", "opacity": 0.7}}
308
+ );
309
+
310
+ // Create a new model for high-scoring residues and apply red sticks style
311
+ let class3Model = viewer.addModel(pdb, "pdb");
312
+ class3Model.setStyle({}, {});
313
+ class3Model.setStyle(
314
+ {"chain": "%s", "resi": [%s]},
315
+ {"stick": {"color": "0xFFA500", "opacity": 1}}
316
+ );
317
+
318
+ // Create a new model for high-scoring residues and apply red sticks style
319
+ let class4Model = viewer.addModel(pdb, "pdb");
320
+ class4Model.setStyle({}, {});
321
+ class4Model.setStyle(
322
+ {"chain": "%s", "resi": [%s]},
323
+ {"stick": {"color": "0xFF4500", "opacity": 1}}
324
+ );
325
+
326
+ // Create a new model for high-scoring residues and apply red sticks style
327
+ let class5Model = viewer.addModel(pdb, "pdb");
328
+ class5Model.setStyle({}, {});
329
+ class5Model.setStyle(
330
+ {"chain": "%s", "resi": [%s]},
331
+ {"stick": {"color": "0xFF0000", "alpha": 1}}
332
+ );
333
+
334
+ """ % (
335
+ segment,
336
+ segment,
337
+ ", ".join(str(resi) for resi in class1_score_residues),
338
+ segment,
339
+ ", ".join(str(resi) for resi in class2_score_residues),
340
+ segment,
341
+ ", ".join(str(resi) for resi in class3_score_residues),
342
+ segment,
343
+ ", ".join(str(resi) for resi in class4_score_residues),
344
+ segment,
345
+ ", ".join(str(resi) for resi in class5_score_residues)
346
+ )
347
+
348
+ # Generate the full HTML content
349
+ html_content = f"""
350
+ <!DOCTYPE html>
351
+ <html>
352
+ <head>
353
+ <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
354
+ <style>
355
+ .mol-container {{
356
+ width: 100%;
357
+ height: 700px;
358
+ position: relative;
359
+ }}
360
+ </style>
361
+ <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script>
362
+ <script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
363
+ </head>
364
+ <body>
365
+ <div id="container" class="mol-container"></div>
366
+ <script>
367
+ let pdb = `{mol}`; // Use template literal to properly escape PDB content
368
+ $(document).ready(function () {{
369
+ let element = $("#container");
370
+ let config = {{ backgroundColor: "white" }};
371
+ let viewer = $3Dmol.createViewer(element, config);
372
+
373
+ {high_score_script}
374
+
375
+ // Add hover functionality
376
+ viewer.setHoverable(
377
+ {{}},
378
+ true,
379
+ function(atom, viewer, event, container) {{
380
+ if (!atom.label) {{
381
+ atom.label = viewer.addLabel(
382
+ atom.resn + ":" +atom.resi + ":" + atom.atom,
383
+ {{
384
+ position: atom,
385
+ backgroundColor: 'mintcream',
386
+ fontColor: 'black',
387
+ fontSize: 18,
388
+ padding: 4
389
+ }}
390
+ );
391
+ }}
392
+ }},
393
+ function(atom, viewer) {{
394
+ if (atom.label) {{
395
+ viewer.removeLabel(atom.label);
396
+ delete atom.label;
397
+ }}
398
+ }}
399
+ );
400
+
401
+ viewer.zoomTo();
402
+ viewer.render();
403
+ viewer.zoom(0.8, 2000);
404
+ }});
405
+ </script>
406
+ </body>
407
+ </html>
408
+ """
409
+
410
+ # Return the HTML content within an iframe safely encoded for special characters
411
+ return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), "&quot;").replace(chr(39), "&#39;")}"></iframe>'
412
+
413
+ # Gradio UI
414
+ with gr.Blocks(css="""
415
+ /* Customize Gradio button colors */
416
+ #visualize-btn, #predict-btn {
417
+ background-color: #FF7300; /* Deep orange */
418
+ color: white;
419
+ border-radius: 5px;
420
+ padding: 10px;
421
+ font-weight: bold;
422
+ }
423
+ #visualize-btn:hover, #predict-btn:hover {
424
+ background-color: #CC5C00; /* Darkened orange on hover */
425
+ }
426
+ """) as demo:
427
+ gr.Markdown("# Protein Binding Site Prediction")
428
+
429
+ # Mode selection
430
+ mode = gr.Radio(
431
+ choices=["PDB ID", "Upload File"],
432
+ value="PDB ID",
433
+ label="Input Mode",
434
+ info="Choose whether to input a PDB ID or upload a PDB/CIF file."
435
+ )
436
+
437
+ # Input components based on mode
438
+ pdb_input = gr.Textbox(value="2F6V", label="PDB ID", placeholder="Enter PDB ID here...")
439
+ pdb_file = gr.File(label="Upload PDB/CIF File", visible=False)
440
+ visualize_btn = gr.Button("Visualize Structure", elem_id="visualize-btn")
441
+
442
+ molecule_output2 = Molecule3D(label="Protein Structure", reps=[
443
+ {
444
+ "model": 0,
445
+ "style": "cartoon",
446
+ "color": "whiteCarbon",
447
+ "residue_range": "",
448
+ "around": 0,
449
+ "byres": False,
450
+ }
451
+ ])
452
+
453
+ with gr.Row():
454
+ segment_input = gr.Textbox(value="A", label="Chain ID (protein)", placeholder="Enter Chain ID here...",
455
+ info="Choose in which chain to predict binding sites.")
456
+ prediction_btn = gr.Button("Predict Binding Site", elem_id="predict-btn")
457
+
458
+ molecule_output = gr.HTML(label="Protein Structure")
459
+ explanation_vis = gr.Markdown("""
460
+ Score dependent colorcoding:
461
+ - 0.0-0.2: white
462
+ - 0.2–0.4: light orange
463
+ - 0.4–0.6: orange
464
+ - 0.6–0.8: orangered
465
+ - 0.8–1.0: red
466
+ """)
467
+ predictions_output = gr.Textbox(label="Visualize Prediction with PyMol")
468
+ gr.Markdown("### Download:\n- List of predicted binding site residues\n- PDB with score in beta factor column")
469
+ download_output = gr.File(label="Download Files", file_count="multiple")
470
+
471
+ def process_interface(mode, pdb_id, pdb_file, chain_id):
472
+ if mode == "PDB ID":
473
+ return process_pdb(pdb_id, chain_id)
474
+ elif mode == "Upload File":
475
+ _, ext = os.path.splitext(pdb_file.name)
476
+ file_path = os.path.join('./', f"{_}{ext}")
477
+ if ext == '.cif':
478
+ pdb_path = convert_cif_to_pdb(file_path)
479
+ else:
480
+ pdb_path= file_path
481
+ return process_pdb(pdb_path, chain_id)
482
+ else:
483
+ return "Error: Invalid mode selected", None, None
484
+
485
+ def fetch_interface(mode, pdb_id, pdb_file):
486
+ if mode == "PDB ID":
487
+ return fetch_pdb(pdb_id)
488
+ elif mode == "Upload File":
489
+ _, ext = os.path.splitext(pdb_file.name)
490
+ file_path = os.path.join('./', f"{_}{ext}")
491
+ #print(ext)
492
+ if ext == '.cif':
493
+ pdb_path = convert_cif_to_pdb(file_path)
494
+ else:
495
+ pdb_path= file_path
496
+ #print(pdb_path)
497
+ return pdb_path
498
+ else:
499
+ return "Error: Invalid mode selected"
500
+
501
+ def toggle_mode(selected_mode):
502
+ if selected_mode == "PDB ID":
503
+ return gr.update(visible=True), gr.update(visible=False)
504
+ else:
505
+ return gr.update(visible=False), gr.update(visible=True)
506
+
507
+ mode.change(
508
+ toggle_mode,
509
+ inputs=[mode],
510
+ outputs=[pdb_input, pdb_file]
511
+ )
512
+
513
+ prediction_btn.click(
514
+ process_interface,
515
+ inputs=[mode, pdb_input, pdb_file, segment_input],
516
+ outputs=[predictions_output, molecule_output, download_output]
517
+ )
518
+
519
+ visualize_btn.click(
520
+ fetch_interface,
521
+ inputs=[mode, pdb_input, pdb_file],
522
+ outputs=molecule_output2
523
+ )
524
+
525
+ gr.Markdown("## Examples")
526
+ gr.Examples(
527
+ examples=[
528
+ ["7RPZ", "A"],
529
+ ["2IWI", "B"],
530
+ ["7LCJ", "R"]
531
+ ],
532
+ inputs=[pdb_input, segment_input],
533
+ outputs=[predictions_output, molecule_output, download_output]
534
+ )
535
+
536
+ #demo.launch(share=True)
537
+ demo.launch()
app.py CHANGED
@@ -7,7 +7,7 @@ from Bio.SeqUtils import seq1
7
  from typing import Optional, Tuple
8
  import numpy as np
9
  import os
10
- from gradio_molecule3d import Molecule3D
11
 
12
  from model_loader import load_model
13
 
@@ -533,5 +533,4 @@ with gr.Blocks(css="""
533
  outputs=[predictions_output, molecule_output, download_output]
534
  )
535
 
536
- #demo.launch(share=True)
537
- demo.launch()
 
7
  from typing import Optional, Tuple
8
  import numpy as np
9
  import os
10
+ #from gradio_molecule3d import Molecule3D
11
 
12
  from model_loader import load_model
13
 
 
533
  outputs=[predictions_output, molecule_output, download_output]
534
  )
535
 
536
+ demo.launch(share=True)
 
requirements.txt CHANGED
@@ -10,4 +10,5 @@ sentencepiece
10
  huggingface_hub>=0.15.0
11
  requests
12
  gradio_molecule3d
13
- biopython>=1.81
 
 
10
  huggingface_hub>=0.15.0
11
  requests
12
  gradio_molecule3d
13
+ biopython>=1.81
14
+ pydantic==1.10.13