Spaces:
Sleeping
Sleeping
Update
Browse files- .ipynb_checkpoints/app-checkpoint.py +49 -250
- app.py +49 -250
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -32,275 +32,74 @@ from Bio.PDB import PDBList
|
|
32 |
from matplotlib import cm # For color mapping
|
33 |
from matplotlib.colors import Normalize
|
34 |
|
35 |
-
#
|
36 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
37 |
max_length = 1500
|
38 |
-
|
39 |
-
# Load model and move to device
|
40 |
model, tokenizer = load_model(checkpoint, max_length)
|
41 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
42 |
model.to(device)
|
43 |
model.eval()
|
44 |
|
45 |
-
reps = [
|
46 |
-
{
|
47 |
-
"model": 0,
|
48 |
-
"chain": "",
|
49 |
-
"resname": "",
|
50 |
-
"style": "cartoon",
|
51 |
-
"color": "spectrum",
|
52 |
-
"residue_range": "",
|
53 |
-
"around": 0,
|
54 |
-
"byres": False,
|
55 |
-
"visible": True
|
56 |
-
}
|
57 |
-
]
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
parser = PDBParser(QUIET=1)
|
73 |
structure = parser.get_structure('protein', pdb_path)
|
|
|
74 |
|
75 |
-
|
76 |
-
aa_dict = {
|
77 |
-
# Standard amino acids (20 canonical)
|
78 |
-
'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',
|
79 |
-
'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',
|
80 |
-
'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',
|
81 |
-
'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',
|
82 |
-
|
83 |
-
# Modified amino acids and alternative names
|
84 |
-
'MSE': 'M', # Selenomethionine
|
85 |
-
'SEP': 'S', # Phosphoserine
|
86 |
-
'TPO': 'T', # Phosphothreonine
|
87 |
-
'CSO': 'C', # Hydroxylalanine
|
88 |
-
'PTR': 'Y', # Phosphotyrosine
|
89 |
-
'HYP': 'P', # Hydroxyproline
|
90 |
-
}
|
91 |
-
|
92 |
-
# Ligand and nucleic acid exclusion set
|
93 |
-
ligand_exclusion_set = {'HOH', 'WAT', 'DOD', 'SO4', 'PO4', 'GOL', 'ACT', 'EDO'}
|
94 |
-
|
95 |
-
# Find the longest protein chain
|
96 |
-
longest_sequence = ""
|
97 |
-
longest_chain = None
|
98 |
-
|
99 |
-
for model in structure:
|
100 |
-
for chain in model:
|
101 |
-
# Skip nucleic acid chains
|
102 |
-
if is_nucleic_acid_chain(chain):
|
103 |
-
continue
|
104 |
-
|
105 |
-
# Extract and convert sequence
|
106 |
-
sequence = ""
|
107 |
-
for residue in chain:
|
108 |
-
# Check if residue is a standard amino acid or a known modified amino acid
|
109 |
-
res_name = residue.get_resname().strip()
|
110 |
-
if res_name in aa_dict:
|
111 |
-
sequence += aa_dict[res_name]
|
112 |
-
|
113 |
-
# Check for valid length and update longest sequence
|
114 |
-
if (10 < len(sequence) < 1500 and
|
115 |
-
len(sequence) > len(longest_sequence)):
|
116 |
-
longest_sequence = sequence
|
117 |
-
longest_chain = chain
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
# Save filtered PDB if needed
|
123 |
-
if longest_chain:
|
124 |
-
io = PDBIO()
|
125 |
-
io.set_structure(longest_chain.get_parent().get_parent())
|
126 |
-
filtered_pdb_path = pdb_path.replace('.pdb', '_filtered.pdb')
|
127 |
-
io.save(filtered_pdb_path)
|
128 |
-
return longest_sequence, longest_chain, filtered_pdb_path
|
129 |
-
|
130 |
-
return longest_sequence, longest_chain, pdb_path
|
131 |
-
|
132 |
-
def create_dataset(tokenizer, seqs, labels, checkpoint):
|
133 |
-
tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True)
|
134 |
-
dataset = Dataset.from_dict(tokenized)
|
135 |
-
|
136 |
-
# Adjust labels based on checkpoint
|
137 |
-
if ("esm" in checkpoint) or ("ProstT5" in checkpoint):
|
138 |
-
labels = [l[:max_length-2] for l in labels]
|
139 |
-
else:
|
140 |
-
labels = [l[:max_length-1] for l in labels]
|
141 |
-
|
142 |
-
dataset = dataset.add_column("labels", labels)
|
143 |
-
|
144 |
-
return dataset
|
145 |
-
|
146 |
-
def convert_predictions(input_logits):
|
147 |
-
all_probs = []
|
148 |
-
for logits in input_logits:
|
149 |
-
logits = logits.reshape(-1, 2)
|
150 |
-
probabilities_class1 = expit(logits[:, 1] - logits[:, 0])
|
151 |
-
all_probs.append(probabilities_class1)
|
152 |
-
|
153 |
-
return np.concatenate(all_probs)
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
def predict_protein_sequence(test_one_letter_sequence):
|
161 |
-
# Sanitize input sequence
|
162 |
-
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \
|
163 |
-
.replace("B", "X").replace("U", "X") \
|
164 |
-
.replace("Z", "X").replace("J", "X")
|
165 |
-
|
166 |
-
# Prepare sequence for different model types
|
167 |
-
if ("prot_t5" in checkpoint) or ("ProstT5" in checkpoint):
|
168 |
-
test_one_letter_sequence = " ".join(test_one_letter_sequence)
|
169 |
-
|
170 |
-
if "ProstT5" in checkpoint:
|
171 |
-
test_one_letter_sequence = "<AA2fold> " + test_one_letter_sequence
|
172 |
-
|
173 |
-
# Create dummy labels
|
174 |
-
dummy_labels = [np.zeros(len(test_one_letter_sequence))]
|
175 |
-
|
176 |
-
# Create dataset
|
177 |
-
test_dataset = create_dataset(tokenizer,
|
178 |
-
[test_one_letter_sequence],
|
179 |
-
dummy_labels,
|
180 |
-
checkpoint)
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
if "esm" not in checkpoint and "ProstT5" not in checkpoint
|
185 |
-
else DataCollatorForTokenClassification(tokenizer))
|
186 |
|
187 |
-
|
188 |
-
test_loader = DataLoader(test_dataset, batch_size=1, collate_fn=data_collator)
|
189 |
-
|
190 |
-
# Predict
|
191 |
-
for batch in test_loader:
|
192 |
-
input_ids = batch['input_ids'].to(device)
|
193 |
-
attention_mask = batch['attention_mask'].to(device)
|
194 |
-
|
195 |
-
with torch.no_grad():
|
196 |
-
outputs = model(input_ids, attention_mask=attention_mask)
|
197 |
-
logits = outputs.logits.detach().cpu().numpy()
|
198 |
-
|
199 |
-
# Process logits
|
200 |
-
logits = logits[:, :-1] # Remove last element for prot_t5
|
201 |
-
logits = convert_predictions(logits)
|
202 |
-
|
203 |
-
# Normalize and format results
|
204 |
-
normalized_scores = normalize_scores(logits)
|
205 |
-
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
|
206 |
-
|
207 |
-
return test_one_letter_sequence, normalized_scores
|
208 |
-
|
209 |
-
def fetch_pdb(pdb_id):
|
210 |
-
try:
|
211 |
-
# Create a directory to store PDB files if it doesn't exist
|
212 |
-
os.makedirs('pdb_files', exist_ok=True)
|
213 |
-
|
214 |
-
# Fetch the PDB structure from RCSB
|
215 |
-
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
|
216 |
-
pdb_path = f'pdb_files/{pdb_id}.pdb'
|
217 |
-
|
218 |
-
# Download the file
|
219 |
-
response = requests.get(pdb_url)
|
220 |
-
|
221 |
-
if response.status_code == 200:
|
222 |
-
with open(pdb_path, 'wb') as f:
|
223 |
-
f.write(response.content)
|
224 |
-
return pdb_path
|
225 |
-
else:
|
226 |
-
return None
|
227 |
-
|
228 |
-
except Exception as e:
|
229 |
-
print(f"Error fetching PDB: {e}")
|
230 |
-
return None
|
231 |
-
|
232 |
-
def score_to_color(score):
|
233 |
-
norm = Normalize(vmin=0, vmax=1) # Normalize scores between 0 and 1
|
234 |
-
color_map = cm.coolwarm # Directly use the colormap (e.g., 'cividis', 'coolwarm', etc.)
|
235 |
-
rgba = color_map(norm(score)) # Get RGBA values
|
236 |
-
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgba[0] * 255), int(rgba[1] * 255), int(rgba[2] * 255))
|
237 |
-
return hex_color
|
238 |
-
|
239 |
-
def process_pdb(pdb_id):
|
240 |
-
# Fetch PDB file
|
241 |
-
pdbl = PDBList()
|
242 |
-
pdb_path = pdbl.retrieve_pdb_file(pdb_id, pdir='pdb_files', file_format='pdb')
|
243 |
-
|
244 |
-
if not pdb_path or not os.path.exists(pdb_path):
|
245 |
-
return "Failed to fetch PDB file", None
|
246 |
-
|
247 |
-
# Extract protein sequence and chain
|
248 |
-
protein_sequence, chain, filtered_pdb_path = extract_protein_sequence(pdb_path)
|
249 |
|
250 |
-
|
251 |
-
return "No suitable protein sequence found", None
|
252 |
-
|
253 |
-
# Predict binding sites
|
254 |
-
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
|
255 |
-
|
256 |
-
# Prepare result string
|
257 |
-
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
|
258 |
-
|
259 |
-
pdb_path = fetch_pdb(pdb_id)
|
260 |
-
|
261 |
-
return result_str, pdb_path
|
262 |
-
|
263 |
-
# Create Gradio interface
|
264 |
with gr.Blocks() as demo:
|
265 |
gr.Markdown("# Protein Binding Site Prediction")
|
266 |
|
267 |
with gr.Row():
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
# 3D Molecule visualization
|
283 |
-
molecule_output = Molecule3D(
|
284 |
-
label="Protein Structure",
|
285 |
-
reps=reps
|
286 |
-
)
|
287 |
-
|
288 |
-
# Prediction logic
|
289 |
-
predict_btn.click(
|
290 |
-
process_pdb,
|
291 |
-
inputs=[pdb_input],
|
292 |
-
outputs=[predictions_output, molecule_output]
|
293 |
-
)
|
294 |
-
|
295 |
-
gr.Markdown("## Examples")
|
296 |
-
gr.Examples(
|
297 |
-
examples=[
|
298 |
-
["2IWI"],
|
299 |
-
["7RPZ"],
|
300 |
-
["3TJN"]
|
301 |
-
],
|
302 |
-
inputs=[pdb_input],
|
303 |
-
outputs=[predictions_output, molecule_output]
|
304 |
)
|
305 |
|
306 |
-
demo.launch()
|
|
|
32 |
from matplotlib import cm # For color mapping
|
33 |
from matplotlib.colors import Normalize
|
34 |
|
35 |
+
# Load model and move to device
|
36 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
37 |
max_length = 1500
|
|
|
|
|
38 |
model, tokenizer = load_model(checkpoint, max_length)
|
39 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
40 |
model.to(device)
|
41 |
model.eval()
|
42 |
|
43 |
+
reps = [{"model": 0, "style": "cartoon", "color": "spectrum"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# Function to fetch a PDB file
|
46 |
+
def fetch_pdb(pdb_id):
|
47 |
+
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
|
48 |
+
pdb_path = f'pdb_files/{pdb_id}.pdb'
|
49 |
+
os.makedirs('pdb_files', exist_ok=True)
|
50 |
+
response = requests.get(pdb_url)
|
51 |
+
if response.status_code == 200:
|
52 |
+
with open(pdb_path, 'wb') as f:
|
53 |
+
f.write(response.content)
|
54 |
+
return pdb_path
|
55 |
+
return None
|
56 |
+
|
57 |
+
# Extract sequence and predict binding scores
|
58 |
+
def process_pdb(pdb_id, segment):
|
59 |
+
pdb_path = fetch_pdb(pdb_id)
|
60 |
+
if not pdb_path:
|
61 |
+
return "Failed to fetch PDB file", None, None
|
62 |
+
|
63 |
parser = PDBParser(QUIET=1)
|
64 |
structure = parser.get_structure('protein', pdb_path)
|
65 |
+
chain = structure[0][segment]
|
66 |
|
67 |
+
sequence = "".join(residue.get_resname().strip() for residue in chain)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
70 |
+
with torch.no_grad():
|
71 |
+
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
scores = outputs[:, 1] - outputs[:, 0]
|
74 |
+
result_str = "\n".join([
|
75 |
+
f"{res.get_resname()} {res.id[1]} {sequence[i]} {scores[i]:.2f}"
|
76 |
+
for i, res in enumerate(chain)
|
77 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
with open(f"{pdb_id}_predictions.txt", "w") as f:
|
80 |
+
f.write(result_str)
|
|
|
|
|
81 |
|
82 |
+
return result_str, pdb_path, f"{pdb_id}_predictions.txt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
# Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
with gr.Blocks() as demo:
|
86 |
gr.Markdown("# Protein Binding Site Prediction")
|
87 |
|
88 |
with gr.Row():
|
89 |
+
pdb_input = gr.Textbox(label="PDB ID")
|
90 |
+
segment_input = gr.Textbox(label="Segment (Chain ID)")
|
91 |
+
visualize_btn = gr.Button("Visualize")
|
92 |
+
prediction_btn = gr.Button("Predict")
|
93 |
+
|
94 |
+
molecule_output = Molecule3D(label="Protein Structure", reps=reps)
|
95 |
+
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
96 |
+
download_output = gr.File(label="Download Predictions")
|
97 |
+
|
98 |
+
visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output)
|
99 |
+
prediction_btn.click(
|
100 |
+
process_pdb,
|
101 |
+
inputs=[pdb_input, segment_input],
|
102 |
+
outputs=[predictions_output, molecule_output, download_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
|
105 |
+
demo.launch(share=True)
|
app.py
CHANGED
@@ -32,275 +32,74 @@ from Bio.PDB import PDBList
|
|
32 |
from matplotlib import cm # For color mapping
|
33 |
from matplotlib.colors import Normalize
|
34 |
|
35 |
-
#
|
36 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
37 |
max_length = 1500
|
38 |
-
|
39 |
-
# Load model and move to device
|
40 |
model, tokenizer = load_model(checkpoint, max_length)
|
41 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
42 |
model.to(device)
|
43 |
model.eval()
|
44 |
|
45 |
-
reps = [
|
46 |
-
{
|
47 |
-
"model": 0,
|
48 |
-
"chain": "",
|
49 |
-
"resname": "",
|
50 |
-
"style": "cartoon",
|
51 |
-
"color": "spectrum",
|
52 |
-
"residue_range": "",
|
53 |
-
"around": 0,
|
54 |
-
"byres": False,
|
55 |
-
"visible": True
|
56 |
-
}
|
57 |
-
]
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
parser = PDBParser(QUIET=1)
|
73 |
structure = parser.get_structure('protein', pdb_path)
|
|
|
74 |
|
75 |
-
|
76 |
-
aa_dict = {
|
77 |
-
# Standard amino acids (20 canonical)
|
78 |
-
'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',
|
79 |
-
'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',
|
80 |
-
'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',
|
81 |
-
'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',
|
82 |
-
|
83 |
-
# Modified amino acids and alternative names
|
84 |
-
'MSE': 'M', # Selenomethionine
|
85 |
-
'SEP': 'S', # Phosphoserine
|
86 |
-
'TPO': 'T', # Phosphothreonine
|
87 |
-
'CSO': 'C', # Hydroxylalanine
|
88 |
-
'PTR': 'Y', # Phosphotyrosine
|
89 |
-
'HYP': 'P', # Hydroxyproline
|
90 |
-
}
|
91 |
-
|
92 |
-
# Ligand and nucleic acid exclusion set
|
93 |
-
ligand_exclusion_set = {'HOH', 'WAT', 'DOD', 'SO4', 'PO4', 'GOL', 'ACT', 'EDO'}
|
94 |
-
|
95 |
-
# Find the longest protein chain
|
96 |
-
longest_sequence = ""
|
97 |
-
longest_chain = None
|
98 |
-
|
99 |
-
for model in structure:
|
100 |
-
for chain in model:
|
101 |
-
# Skip nucleic acid chains
|
102 |
-
if is_nucleic_acid_chain(chain):
|
103 |
-
continue
|
104 |
-
|
105 |
-
# Extract and convert sequence
|
106 |
-
sequence = ""
|
107 |
-
for residue in chain:
|
108 |
-
# Check if residue is a standard amino acid or a known modified amino acid
|
109 |
-
res_name = residue.get_resname().strip()
|
110 |
-
if res_name in aa_dict:
|
111 |
-
sequence += aa_dict[res_name]
|
112 |
-
|
113 |
-
# Check for valid length and update longest sequence
|
114 |
-
if (10 < len(sequence) < 1500 and
|
115 |
-
len(sequence) > len(longest_sequence)):
|
116 |
-
longest_sequence = sequence
|
117 |
-
longest_chain = chain
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
# Save filtered PDB if needed
|
123 |
-
if longest_chain:
|
124 |
-
io = PDBIO()
|
125 |
-
io.set_structure(longest_chain.get_parent().get_parent())
|
126 |
-
filtered_pdb_path = pdb_path.replace('.pdb', '_filtered.pdb')
|
127 |
-
io.save(filtered_pdb_path)
|
128 |
-
return longest_sequence, longest_chain, filtered_pdb_path
|
129 |
-
|
130 |
-
return longest_sequence, longest_chain, pdb_path
|
131 |
-
|
132 |
-
def create_dataset(tokenizer, seqs, labels, checkpoint):
|
133 |
-
tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True)
|
134 |
-
dataset = Dataset.from_dict(tokenized)
|
135 |
-
|
136 |
-
# Adjust labels based on checkpoint
|
137 |
-
if ("esm" in checkpoint) or ("ProstT5" in checkpoint):
|
138 |
-
labels = [l[:max_length-2] for l in labels]
|
139 |
-
else:
|
140 |
-
labels = [l[:max_length-1] for l in labels]
|
141 |
-
|
142 |
-
dataset = dataset.add_column("labels", labels)
|
143 |
-
|
144 |
-
return dataset
|
145 |
-
|
146 |
-
def convert_predictions(input_logits):
|
147 |
-
all_probs = []
|
148 |
-
for logits in input_logits:
|
149 |
-
logits = logits.reshape(-1, 2)
|
150 |
-
probabilities_class1 = expit(logits[:, 1] - logits[:, 0])
|
151 |
-
all_probs.append(probabilities_class1)
|
152 |
-
|
153 |
-
return np.concatenate(all_probs)
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
def predict_protein_sequence(test_one_letter_sequence):
|
161 |
-
# Sanitize input sequence
|
162 |
-
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \
|
163 |
-
.replace("B", "X").replace("U", "X") \
|
164 |
-
.replace("Z", "X").replace("J", "X")
|
165 |
-
|
166 |
-
# Prepare sequence for different model types
|
167 |
-
if ("prot_t5" in checkpoint) or ("ProstT5" in checkpoint):
|
168 |
-
test_one_letter_sequence = " ".join(test_one_letter_sequence)
|
169 |
-
|
170 |
-
if "ProstT5" in checkpoint:
|
171 |
-
test_one_letter_sequence = "<AA2fold> " + test_one_letter_sequence
|
172 |
-
|
173 |
-
# Create dummy labels
|
174 |
-
dummy_labels = [np.zeros(len(test_one_letter_sequence))]
|
175 |
-
|
176 |
-
# Create dataset
|
177 |
-
test_dataset = create_dataset(tokenizer,
|
178 |
-
[test_one_letter_sequence],
|
179 |
-
dummy_labels,
|
180 |
-
checkpoint)
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
if "esm" not in checkpoint and "ProstT5" not in checkpoint
|
185 |
-
else DataCollatorForTokenClassification(tokenizer))
|
186 |
|
187 |
-
|
188 |
-
test_loader = DataLoader(test_dataset, batch_size=1, collate_fn=data_collator)
|
189 |
-
|
190 |
-
# Predict
|
191 |
-
for batch in test_loader:
|
192 |
-
input_ids = batch['input_ids'].to(device)
|
193 |
-
attention_mask = batch['attention_mask'].to(device)
|
194 |
-
|
195 |
-
with torch.no_grad():
|
196 |
-
outputs = model(input_ids, attention_mask=attention_mask)
|
197 |
-
logits = outputs.logits.detach().cpu().numpy()
|
198 |
-
|
199 |
-
# Process logits
|
200 |
-
logits = logits[:, :-1] # Remove last element for prot_t5
|
201 |
-
logits = convert_predictions(logits)
|
202 |
-
|
203 |
-
# Normalize and format results
|
204 |
-
normalized_scores = normalize_scores(logits)
|
205 |
-
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
|
206 |
-
|
207 |
-
return test_one_letter_sequence, normalized_scores
|
208 |
-
|
209 |
-
def fetch_pdb(pdb_id):
|
210 |
-
try:
|
211 |
-
# Create a directory to store PDB files if it doesn't exist
|
212 |
-
os.makedirs('pdb_files', exist_ok=True)
|
213 |
-
|
214 |
-
# Fetch the PDB structure from RCSB
|
215 |
-
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
|
216 |
-
pdb_path = f'pdb_files/{pdb_id}.pdb'
|
217 |
-
|
218 |
-
# Download the file
|
219 |
-
response = requests.get(pdb_url)
|
220 |
-
|
221 |
-
if response.status_code == 200:
|
222 |
-
with open(pdb_path, 'wb') as f:
|
223 |
-
f.write(response.content)
|
224 |
-
return pdb_path
|
225 |
-
else:
|
226 |
-
return None
|
227 |
-
|
228 |
-
except Exception as e:
|
229 |
-
print(f"Error fetching PDB: {e}")
|
230 |
-
return None
|
231 |
-
|
232 |
-
def score_to_color(score):
|
233 |
-
norm = Normalize(vmin=0, vmax=1) # Normalize scores between 0 and 1
|
234 |
-
color_map = cm.coolwarm # Directly use the colormap (e.g., 'cividis', 'coolwarm', etc.)
|
235 |
-
rgba = color_map(norm(score)) # Get RGBA values
|
236 |
-
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgba[0] * 255), int(rgba[1] * 255), int(rgba[2] * 255))
|
237 |
-
return hex_color
|
238 |
-
|
239 |
-
def process_pdb(pdb_id):
|
240 |
-
# Fetch PDB file
|
241 |
-
pdbl = PDBList()
|
242 |
-
pdb_path = pdbl.retrieve_pdb_file(pdb_id, pdir='pdb_files', file_format='pdb')
|
243 |
-
|
244 |
-
if not pdb_path or not os.path.exists(pdb_path):
|
245 |
-
return "Failed to fetch PDB file", None
|
246 |
-
|
247 |
-
# Extract protein sequence and chain
|
248 |
-
protein_sequence, chain, filtered_pdb_path = extract_protein_sequence(pdb_path)
|
249 |
|
250 |
-
|
251 |
-
return "No suitable protein sequence found", None
|
252 |
-
|
253 |
-
# Predict binding sites
|
254 |
-
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
|
255 |
-
|
256 |
-
# Prepare result string
|
257 |
-
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
|
258 |
-
|
259 |
-
pdb_path = fetch_pdb(pdb_id)
|
260 |
-
|
261 |
-
return result_str, pdb_path
|
262 |
-
|
263 |
-
# Create Gradio interface
|
264 |
with gr.Blocks() as demo:
|
265 |
gr.Markdown("# Protein Binding Site Prediction")
|
266 |
|
267 |
with gr.Row():
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
# 3D Molecule visualization
|
283 |
-
molecule_output = Molecule3D(
|
284 |
-
label="Protein Structure",
|
285 |
-
reps=reps
|
286 |
-
)
|
287 |
-
|
288 |
-
# Prediction logic
|
289 |
-
predict_btn.click(
|
290 |
-
process_pdb,
|
291 |
-
inputs=[pdb_input],
|
292 |
-
outputs=[predictions_output, molecule_output]
|
293 |
-
)
|
294 |
-
|
295 |
-
gr.Markdown("## Examples")
|
296 |
-
gr.Examples(
|
297 |
-
examples=[
|
298 |
-
["2IWI"],
|
299 |
-
["7RPZ"],
|
300 |
-
["3TJN"]
|
301 |
-
],
|
302 |
-
inputs=[pdb_input],
|
303 |
-
outputs=[predictions_output, molecule_output]
|
304 |
)
|
305 |
|
306 |
-
demo.launch()
|
|
|
32 |
from matplotlib import cm # For color mapping
|
33 |
from matplotlib.colors import Normalize
|
34 |
|
35 |
+
# Load model and move to device
|
36 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
37 |
max_length = 1500
|
|
|
|
|
38 |
model, tokenizer = load_model(checkpoint, max_length)
|
39 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
40 |
model.to(device)
|
41 |
model.eval()
|
42 |
|
43 |
+
reps = [{"model": 0, "style": "cartoon", "color": "spectrum"}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# Function to fetch a PDB file
|
46 |
+
def fetch_pdb(pdb_id):
|
47 |
+
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
|
48 |
+
pdb_path = f'pdb_files/{pdb_id}.pdb'
|
49 |
+
os.makedirs('pdb_files', exist_ok=True)
|
50 |
+
response = requests.get(pdb_url)
|
51 |
+
if response.status_code == 200:
|
52 |
+
with open(pdb_path, 'wb') as f:
|
53 |
+
f.write(response.content)
|
54 |
+
return pdb_path
|
55 |
+
return None
|
56 |
+
|
57 |
+
# Extract sequence and predict binding scores
|
58 |
+
def process_pdb(pdb_id, segment):
|
59 |
+
pdb_path = fetch_pdb(pdb_id)
|
60 |
+
if not pdb_path:
|
61 |
+
return "Failed to fetch PDB file", None, None
|
62 |
+
|
63 |
parser = PDBParser(QUIET=1)
|
64 |
structure = parser.get_structure('protein', pdb_path)
|
65 |
+
chain = structure[0][segment]
|
66 |
|
67 |
+
sequence = "".join(residue.get_resname().strip() for residue in chain)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
70 |
+
with torch.no_grad():
|
71 |
+
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
scores = outputs[:, 1] - outputs[:, 0]
|
74 |
+
result_str = "\n".join([
|
75 |
+
f"{res.get_resname()} {res.id[1]} {sequence[i]} {scores[i]:.2f}"
|
76 |
+
for i, res in enumerate(chain)
|
77 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
with open(f"{pdb_id}_predictions.txt", "w") as f:
|
80 |
+
f.write(result_str)
|
|
|
|
|
81 |
|
82 |
+
return result_str, pdb_path, f"{pdb_id}_predictions.txt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
# Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
with gr.Blocks() as demo:
|
86 |
gr.Markdown("# Protein Binding Site Prediction")
|
87 |
|
88 |
with gr.Row():
|
89 |
+
pdb_input = gr.Textbox(label="PDB ID")
|
90 |
+
segment_input = gr.Textbox(label="Segment (Chain ID)")
|
91 |
+
visualize_btn = gr.Button("Visualize")
|
92 |
+
prediction_btn = gr.Button("Predict")
|
93 |
+
|
94 |
+
molecule_output = Molecule3D(label="Protein Structure", reps=reps)
|
95 |
+
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
96 |
+
download_output = gr.File(label="Download Predictions")
|
97 |
+
|
98 |
+
visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output)
|
99 |
+
prediction_btn.click(
|
100 |
+
process_pdb,
|
101 |
+
inputs=[pdb_input, segment_input],
|
102 |
+
outputs=[predictions_output, molecule_output, download_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
|
105 |
+
demo.launch(share=True)
|