Spaces:
Sleeping
Sleeping
Update requirements and make necessary code changes
Browse files- .ipynb_checkpoints/app-checkpoint.py +4 -2
- .ipynb_checkpoints/model_loader-checkpoint.py +2 -2
- app.py +4 -2
- model_loader.py +2 -2
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -38,7 +38,9 @@ from scipy.special import expit
|
|
38 |
#import peft
|
39 |
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
40 |
|
41 |
-
|
|
|
|
|
42 |
|
43 |
def create_dataset(tokenizer,seqs,labels,checkpoint):
|
44 |
|
@@ -78,7 +80,7 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
78 |
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X").replace("B", "X").replace("U", "X").replace("Z", "X").replace("J", "X")
|
79 |
|
80 |
# Add spaces between each amino acid for ProtT5 and ProstT5 models
|
81 |
-
if "
|
82 |
test_one_letter_sequence = " ".join(test_one_letter_sequence)
|
83 |
|
84 |
# Add <AA2fold> for ProstT5 model input format
|
|
|
38 |
#import peft
|
39 |
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
40 |
|
41 |
+
checkpoint='ThorbenF/prot_t5_xl_uniref50'
|
42 |
+
|
43 |
+
model, tokenizer = load_model(checkpoint)
|
44 |
|
45 |
def create_dataset(tokenizer,seqs,labels,checkpoint):
|
46 |
|
|
|
80 |
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X").replace("B", "X").replace("U", "X").replace("Z", "X").replace("J", "X")
|
81 |
|
82 |
# Add spaces between each amino acid for ProtT5 and ProstT5 models
|
83 |
+
if "prot_t5" in checkpoint:
|
84 |
test_one_letter_sequence = " ".join(test_one_letter_sequence)
|
85 |
|
86 |
# Add <AA2fold> for ProstT5 model input format
|
.ipynb_checkpoints/model_loader-checkpoint.py
CHANGED
@@ -613,8 +613,8 @@ def load_esm_model_classification(checkpoint, num_labels, half_precision, full=F
|
|
613 |
|
614 |
return model, tokenizer
|
615 |
|
616 |
-
def load_model():
|
617 |
-
checkpoint='ThorbenF/prot_t5_xl_uniref50'
|
618 |
#best_model_path='ThorbenF/prot_t5_xl_uniref50/cpt.pth'
|
619 |
full=False
|
620 |
deepspeed=False
|
|
|
613 |
|
614 |
return model, tokenizer
|
615 |
|
616 |
+
def load_model(checkpoint):
|
617 |
+
#checkpoint='ThorbenF/prot_t5_xl_uniref50'
|
618 |
#best_model_path='ThorbenF/prot_t5_xl_uniref50/cpt.pth'
|
619 |
full=False
|
620 |
deepspeed=False
|
app.py
CHANGED
@@ -38,7 +38,9 @@ from scipy.special import expit
|
|
38 |
#import peft
|
39 |
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
40 |
|
41 |
-
|
|
|
|
|
42 |
|
43 |
def create_dataset(tokenizer,seqs,labels,checkpoint):
|
44 |
|
@@ -78,7 +80,7 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
78 |
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X").replace("B", "X").replace("U", "X").replace("Z", "X").replace("J", "X")
|
79 |
|
80 |
# Add spaces between each amino acid for ProtT5 and ProstT5 models
|
81 |
-
if "
|
82 |
test_one_letter_sequence = " ".join(test_one_letter_sequence)
|
83 |
|
84 |
# Add <AA2fold> for ProstT5 model input format
|
|
|
38 |
#import peft
|
39 |
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
40 |
|
41 |
+
checkpoint='ThorbenF/prot_t5_xl_uniref50'
|
42 |
+
|
43 |
+
model, tokenizer = load_model(checkpoint)
|
44 |
|
45 |
def create_dataset(tokenizer,seqs,labels,checkpoint):
|
46 |
|
|
|
80 |
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X").replace("B", "X").replace("U", "X").replace("Z", "X").replace("J", "X")
|
81 |
|
82 |
# Add spaces between each amino acid for ProtT5 and ProstT5 models
|
83 |
+
if "prot_t5" in checkpoint:
|
84 |
test_one_letter_sequence = " ".join(test_one_letter_sequence)
|
85 |
|
86 |
# Add <AA2fold> for ProstT5 model input format
|
model_loader.py
CHANGED
@@ -613,8 +613,8 @@ def load_esm_model_classification(checkpoint, num_labels, half_precision, full=F
|
|
613 |
|
614 |
return model, tokenizer
|
615 |
|
616 |
-
def load_model():
|
617 |
-
checkpoint='ThorbenF/prot_t5_xl_uniref50'
|
618 |
#best_model_path='ThorbenF/prot_t5_xl_uniref50/cpt.pth'
|
619 |
full=False
|
620 |
deepspeed=False
|
|
|
613 |
|
614 |
return model, tokenizer
|
615 |
|
616 |
+
def load_model(checkpoint):
|
617 |
+
#checkpoint='ThorbenF/prot_t5_xl_uniref50'
|
618 |
#best_model_path='ThorbenF/prot_t5_xl_uniref50/cpt.pth'
|
619 |
full=False
|
620 |
deepspeed=False
|