Spaces:
Running
Running
Update requirements and make necessary code changes
Browse files- .ipynb_checkpoints/app-checkpoint.py +5 -5
- app.py +5 -5
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -99,6 +99,7 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
99 |
|
100 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
101 |
model.to(device)
|
|
|
102 |
for batch in test_loader:
|
103 |
input_ids = batch['input_ids'].to(device)
|
104 |
attention_mask = batch['attention_mask'].to(device)
|
@@ -106,13 +107,12 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
106 |
|
107 |
outputs = model(input_ids, attention_mask=attention_mask)
|
108 |
logits = outputs.logits.detach().cpu().numpy()
|
109 |
-
|
|
|
110 |
logits=convert_predictions(logits)
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
normalized_scores = normalize_scores(logits)
|
|
|
116 |
|
117 |
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(test_one_letter_sequence, normalized_scores)])
|
118 |
|
|
|
99 |
|
100 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
101 |
model.to(device)
|
102 |
+
model.eval()
|
103 |
for batch in test_loader:
|
104 |
input_ids = batch['input_ids'].to(device)
|
105 |
attention_mask = batch['attention_mask'].to(device)
|
|
|
107 |
|
108 |
outputs = model(input_ids, attention_mask=attention_mask)
|
109 |
logits = outputs.logits.detach().cpu().numpy()
|
110 |
+
|
111 |
+
logits = logits[:, :-1] #remove for prot_t5 the last element, because it is a special token
|
112 |
logits=convert_predictions(logits)
|
113 |
+
|
|
|
|
|
|
|
114 |
normalized_scores = normalize_scores(logits)
|
115 |
+
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
|
116 |
|
117 |
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(test_one_letter_sequence, normalized_scores)])
|
118 |
|
app.py
CHANGED
@@ -99,6 +99,7 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
99 |
|
100 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
101 |
model.to(device)
|
|
|
102 |
for batch in test_loader:
|
103 |
input_ids = batch['input_ids'].to(device)
|
104 |
attention_mask = batch['attention_mask'].to(device)
|
@@ -106,13 +107,12 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
106 |
|
107 |
outputs = model(input_ids, attention_mask=attention_mask)
|
108 |
logits = outputs.logits.detach().cpu().numpy()
|
109 |
-
|
|
|
110 |
logits=convert_predictions(logits)
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
normalized_scores = normalize_scores(logits)
|
|
|
116 |
|
117 |
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(test_one_letter_sequence, normalized_scores)])
|
118 |
|
|
|
99 |
|
100 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
101 |
model.to(device)
|
102 |
+
model.eval()
|
103 |
for batch in test_loader:
|
104 |
input_ids = batch['input_ids'].to(device)
|
105 |
attention_mask = batch['attention_mask'].to(device)
|
|
|
107 |
|
108 |
outputs = model(input_ids, attention_mask=attention_mask)
|
109 |
logits = outputs.logits.detach().cpu().numpy()
|
110 |
+
|
111 |
+
logits = logits[:, :-1] #remove for prot_t5 the last element, because it is a special token
|
112 |
logits=convert_predictions(logits)
|
113 |
+
|
|
|
|
|
|
|
114 |
normalized_scores = normalize_scores(logits)
|
115 |
+
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
|
116 |
|
117 |
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(test_one_letter_sequence, normalized_scores)])
|
118 |
|