Spaces:
Sleeping
Sleeping
Update
Browse files- .ipynb_checkpoints/app-checkpoint.py +40 -22
- .ipynb_checkpoints/requirements-checkpoint.txt +2 -1
- app.py +40 -22
- requirements.txt +2 -1
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -22,11 +22,16 @@ from scipy.special import expit
|
|
22 |
|
23 |
import requests
|
24 |
|
|
|
|
|
25 |
# Biopython imports
|
26 |
from Bio.PDB import PDBParser, Select, PDBIO
|
27 |
from Bio.PDB.DSSP import DSSP
|
28 |
import Bio.PDB.PDBList as PDBList
|
29 |
|
|
|
|
|
|
|
30 |
# Configuration
|
31 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
32 |
max_length = 1500
|
@@ -210,64 +215,77 @@ def fetch_pdb(pdb_id):
|
|
210 |
print(f"Error fetching PDB: {e}")
|
211 |
return None
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
def process_pdb(pdb_id):
|
214 |
# Fetch PDB file
|
215 |
-
# Use PDBList to download the file if it doesn't exist locally
|
216 |
pdbl = PDBList.PDBList()
|
217 |
pdb_path = pdbl.retrieve_pdb_file(pdb_id, pdir='pdb_files', file_format='pdb')
|
218 |
-
|
219 |
if not pdb_path or not os.path.exists(pdb_path):
|
220 |
return "Failed to fetch PDB file", None
|
221 |
|
222 |
# Extract protein sequence and chain
|
223 |
protein_sequence, chain, filtered_pdb_path = extract_protein_sequence(pdb_path)
|
224 |
-
|
225 |
if not protein_sequence:
|
226 |
return "No suitable protein sequence found", None
|
227 |
|
228 |
# Predict binding sites
|
229 |
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
|
230 |
-
|
231 |
# Prepare result string
|
232 |
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
# Create Gradio interface
|
237 |
with gr.Blocks() as demo:
|
238 |
gr.Markdown("# Protein Binding Site Prediction")
|
239 |
-
|
240 |
with gr.Row():
|
241 |
with gr.Column():
|
242 |
-
# PDB ID input with default suggestion
|
243 |
pdb_input = gr.Textbox(
|
244 |
-
value="2IWI",
|
245 |
label="PDB ID",
|
246 |
placeholder="Enter PDB ID here..."
|
247 |
)
|
248 |
-
|
249 |
-
# Predict button
|
250 |
predict_btn = gr.Button("Predict Binding Sites")
|
251 |
-
|
252 |
with gr.Column():
|
253 |
-
# Binding site predictions output
|
254 |
predictions_output = gr.Textbox(
|
255 |
label="Binding Site Predictions"
|
256 |
)
|
257 |
-
|
258 |
-
|
259 |
-
molecule_output = Molecule3D(
|
260 |
-
label="Protein Structure"
|
261 |
-
)
|
262 |
-
|
263 |
# Prediction logic
|
264 |
predict_btn.click(
|
265 |
-
process_pdb,
|
266 |
-
inputs=[pdb_input],
|
267 |
outputs=[predictions_output, molecule_output]
|
268 |
)
|
269 |
|
270 |
-
# Add some example inputs
|
271 |
gr.Markdown("## Examples")
|
272 |
gr.Examples(
|
273 |
examples=[
|
|
|
22 |
|
23 |
import requests
|
24 |
|
25 |
+
from gradio_molecule3d import Molecule3D
|
26 |
+
|
27 |
# Biopython imports
|
28 |
from Bio.PDB import PDBParser, Select, PDBIO
|
29 |
from Bio.PDB.DSSP import DSSP
|
30 |
import Bio.PDB.PDBList as PDBList
|
31 |
|
32 |
+
from matplotlib import cm # For color mapping
|
33 |
+
from matplotlib.colors import Normalize
|
34 |
+
|
35 |
# Configuration
|
36 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
37 |
max_length = 1500
|
|
|
215 |
print(f"Error fetching PDB: {e}")
|
216 |
return None
|
217 |
|
218 |
+
# Function to map scores to colors (blue for low scores, red for high scores)
|
219 |
+
def score_to_color(score):
|
220 |
+
norm = Normalize(vmin=0, vmax=1) # Assuming scores are normalized between 0 and 1
|
221 |
+
color_map = cm.get_cmap('coolwarm') # Use a blue-to-red colormap
|
222 |
+
rgba = color_map(norm(score)) # Get RGBA values
|
223 |
+
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgba[0] * 255), int(rgba[1] * 255), int(rgba[2] * 255))
|
224 |
+
return hex_color
|
225 |
+
|
226 |
def process_pdb(pdb_id):
|
227 |
# Fetch PDB file
|
|
|
228 |
pdbl = PDBList.PDBList()
|
229 |
pdb_path = pdbl.retrieve_pdb_file(pdb_id, pdir='pdb_files', file_format='pdb')
|
230 |
+
|
231 |
if not pdb_path or not os.path.exists(pdb_path):
|
232 |
return "Failed to fetch PDB file", None
|
233 |
|
234 |
# Extract protein sequence and chain
|
235 |
protein_sequence, chain, filtered_pdb_path = extract_protein_sequence(pdb_path)
|
236 |
+
|
237 |
if not protein_sequence:
|
238 |
return "No suitable protein sequence found", None
|
239 |
|
240 |
# Predict binding sites
|
241 |
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
|
242 |
+
|
243 |
# Prepare result string
|
244 |
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
|
245 |
+
|
246 |
+
# Prepare residue-based coloring for Molecule3D
|
247 |
+
reps = []
|
248 |
+
for i, score in enumerate(normalized_scores):
|
249 |
+
reps.append({
|
250 |
+
"model": 0,
|
251 |
+
"chain": chain.get_id(),
|
252 |
+
"residue_range": f"{i}-{i}",
|
253 |
+
"style": "stick",
|
254 |
+
"color": score_to_color(score),
|
255 |
+
"byres": True,
|
256 |
+
"visible": True
|
257 |
+
})
|
258 |
+
|
259 |
+
molecule_viewer = Molecule3D(reps=reps)
|
260 |
+
|
261 |
+
return result_str, molecule_viewer
|
262 |
|
263 |
# Create Gradio interface
|
264 |
with gr.Blocks() as demo:
|
265 |
gr.Markdown("# Protein Binding Site Prediction")
|
266 |
+
|
267 |
with gr.Row():
|
268 |
with gr.Column():
|
|
|
269 |
pdb_input = gr.Textbox(
|
270 |
+
value="2IWI",
|
271 |
label="PDB ID",
|
272 |
placeholder="Enter PDB ID here..."
|
273 |
)
|
|
|
|
|
274 |
predict_btn = gr.Button("Predict Binding Sites")
|
275 |
+
|
276 |
with gr.Column():
|
|
|
277 |
predictions_output = gr.Textbox(
|
278 |
label="Binding Site Predictions"
|
279 |
)
|
280 |
+
molecule_output = Molecule3D(label="Protein Structure")
|
281 |
+
|
|
|
|
|
|
|
|
|
282 |
# Prediction logic
|
283 |
predict_btn.click(
|
284 |
+
process_pdb,
|
285 |
+
inputs=[pdb_input],
|
286 |
outputs=[predictions_output, molecule_output]
|
287 |
)
|
288 |
|
|
|
289 |
gr.Markdown("## Examples")
|
290 |
gr.Examples(
|
291 |
examples=[
|
.ipynb_checkpoints/requirements-checkpoint.txt
CHANGED
@@ -10,4 +10,5 @@ sentencepiece
|
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
gradio_molecule3d
|
13 |
-
biopython>=1.81
|
|
|
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
gradio_molecule3d
|
13 |
+
biopython>=1.81
|
14 |
+
matplotlib
|
app.py
CHANGED
@@ -22,11 +22,16 @@ from scipy.special import expit
|
|
22 |
|
23 |
import requests
|
24 |
|
|
|
|
|
25 |
# Biopython imports
|
26 |
from Bio.PDB import PDBParser, Select, PDBIO
|
27 |
from Bio.PDB.DSSP import DSSP
|
28 |
import Bio.PDB.PDBList as PDBList
|
29 |
|
|
|
|
|
|
|
30 |
# Configuration
|
31 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
32 |
max_length = 1500
|
@@ -210,64 +215,77 @@ def fetch_pdb(pdb_id):
|
|
210 |
print(f"Error fetching PDB: {e}")
|
211 |
return None
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
def process_pdb(pdb_id):
|
214 |
# Fetch PDB file
|
215 |
-
# Use PDBList to download the file if it doesn't exist locally
|
216 |
pdbl = PDBList.PDBList()
|
217 |
pdb_path = pdbl.retrieve_pdb_file(pdb_id, pdir='pdb_files', file_format='pdb')
|
218 |
-
|
219 |
if not pdb_path or not os.path.exists(pdb_path):
|
220 |
return "Failed to fetch PDB file", None
|
221 |
|
222 |
# Extract protein sequence and chain
|
223 |
protein_sequence, chain, filtered_pdb_path = extract_protein_sequence(pdb_path)
|
224 |
-
|
225 |
if not protein_sequence:
|
226 |
return "No suitable protein sequence found", None
|
227 |
|
228 |
# Predict binding sites
|
229 |
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
|
230 |
-
|
231 |
# Prepare result string
|
232 |
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
# Create Gradio interface
|
237 |
with gr.Blocks() as demo:
|
238 |
gr.Markdown("# Protein Binding Site Prediction")
|
239 |
-
|
240 |
with gr.Row():
|
241 |
with gr.Column():
|
242 |
-
# PDB ID input with default suggestion
|
243 |
pdb_input = gr.Textbox(
|
244 |
-
value="2IWI",
|
245 |
label="PDB ID",
|
246 |
placeholder="Enter PDB ID here..."
|
247 |
)
|
248 |
-
|
249 |
-
# Predict button
|
250 |
predict_btn = gr.Button("Predict Binding Sites")
|
251 |
-
|
252 |
with gr.Column():
|
253 |
-
# Binding site predictions output
|
254 |
predictions_output = gr.Textbox(
|
255 |
label="Binding Site Predictions"
|
256 |
)
|
257 |
-
|
258 |
-
|
259 |
-
molecule_output = Molecule3D(
|
260 |
-
label="Protein Structure"
|
261 |
-
)
|
262 |
-
|
263 |
# Prediction logic
|
264 |
predict_btn.click(
|
265 |
-
process_pdb,
|
266 |
-
inputs=[pdb_input],
|
267 |
outputs=[predictions_output, molecule_output]
|
268 |
)
|
269 |
|
270 |
-
# Add some example inputs
|
271 |
gr.Markdown("## Examples")
|
272 |
gr.Examples(
|
273 |
examples=[
|
|
|
22 |
|
23 |
import requests
|
24 |
|
25 |
+
from gradio_molecule3d import Molecule3D
|
26 |
+
|
27 |
# Biopython imports
|
28 |
from Bio.PDB import PDBParser, Select, PDBIO
|
29 |
from Bio.PDB.DSSP import DSSP
|
30 |
import Bio.PDB.PDBList as PDBList
|
31 |
|
32 |
+
from matplotlib import cm # For color mapping
|
33 |
+
from matplotlib.colors import Normalize
|
34 |
+
|
35 |
# Configuration
|
36 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
37 |
max_length = 1500
|
|
|
215 |
print(f"Error fetching PDB: {e}")
|
216 |
return None
|
217 |
|
218 |
+
# Function to map scores to colors (blue for low scores, red for high scores)
|
219 |
+
def score_to_color(score):
|
220 |
+
norm = Normalize(vmin=0, vmax=1) # Assuming scores are normalized between 0 and 1
|
221 |
+
color_map = cm.get_cmap('coolwarm') # Use a blue-to-red colormap
|
222 |
+
rgba = color_map(norm(score)) # Get RGBA values
|
223 |
+
hex_color = '#{:02x}{:02x}{:02x}'.format(int(rgba[0] * 255), int(rgba[1] * 255), int(rgba[2] * 255))
|
224 |
+
return hex_color
|
225 |
+
|
226 |
def process_pdb(pdb_id):
|
227 |
# Fetch PDB file
|
|
|
228 |
pdbl = PDBList.PDBList()
|
229 |
pdb_path = pdbl.retrieve_pdb_file(pdb_id, pdir='pdb_files', file_format='pdb')
|
230 |
+
|
231 |
if not pdb_path or not os.path.exists(pdb_path):
|
232 |
return "Failed to fetch PDB file", None
|
233 |
|
234 |
# Extract protein sequence and chain
|
235 |
protein_sequence, chain, filtered_pdb_path = extract_protein_sequence(pdb_path)
|
236 |
+
|
237 |
if not protein_sequence:
|
238 |
return "No suitable protein sequence found", None
|
239 |
|
240 |
# Predict binding sites
|
241 |
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
|
242 |
+
|
243 |
# Prepare result string
|
244 |
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
|
245 |
+
|
246 |
+
# Prepare residue-based coloring for Molecule3D
|
247 |
+
reps = []
|
248 |
+
for i, score in enumerate(normalized_scores):
|
249 |
+
reps.append({
|
250 |
+
"model": 0,
|
251 |
+
"chain": chain.get_id(),
|
252 |
+
"residue_range": f"{i}-{i}",
|
253 |
+
"style": "stick",
|
254 |
+
"color": score_to_color(score),
|
255 |
+
"byres": True,
|
256 |
+
"visible": True
|
257 |
+
})
|
258 |
+
|
259 |
+
molecule_viewer = Molecule3D(reps=reps)
|
260 |
+
|
261 |
+
return result_str, molecule_viewer
|
262 |
|
263 |
# Create Gradio interface
|
264 |
with gr.Blocks() as demo:
|
265 |
gr.Markdown("# Protein Binding Site Prediction")
|
266 |
+
|
267 |
with gr.Row():
|
268 |
with gr.Column():
|
|
|
269 |
pdb_input = gr.Textbox(
|
270 |
+
value="2IWI",
|
271 |
label="PDB ID",
|
272 |
placeholder="Enter PDB ID here..."
|
273 |
)
|
|
|
|
|
274 |
predict_btn = gr.Button("Predict Binding Sites")
|
275 |
+
|
276 |
with gr.Column():
|
|
|
277 |
predictions_output = gr.Textbox(
|
278 |
label="Binding Site Predictions"
|
279 |
)
|
280 |
+
molecule_output = Molecule3D(label="Protein Structure")
|
281 |
+
|
|
|
|
|
|
|
|
|
282 |
# Prediction logic
|
283 |
predict_btn.click(
|
284 |
+
process_pdb,
|
285 |
+
inputs=[pdb_input],
|
286 |
outputs=[predictions_output, molecule_output]
|
287 |
)
|
288 |
|
|
|
289 |
gr.Markdown("## Examples")
|
290 |
gr.Examples(
|
291 |
examples=[
|
requirements.txt
CHANGED
@@ -10,4 +10,5 @@ sentencepiece
|
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
gradio_molecule3d
|
13 |
-
biopython>=1.81
|
|
|
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
gradio_molecule3d
|
13 |
+
biopython>=1.81
|
14 |
+
matplotlib
|