Spaces:
Sleeping
Sleeping
Update requirements and make necessary code changes
Browse files
.ipynb_checkpoints/model_loader-checkpoint.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
@@ -628,14 +630,11 @@ def load_model():
|
|
628 |
model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
|
629 |
|
630 |
|
631 |
-
|
632 |
-
|
633 |
-
print(checkpoint_dir)
|
634 |
-
# Construct the path to the custom checkpoint file
|
635 |
-
best_model_path = os.path.join(checkpoint_dir, 'cpt.pth')
|
636 |
|
637 |
# Load the best model state
|
638 |
-
state_dict = torch.load(
|
639 |
model.load_state_dict(state_dict)
|
640 |
|
641 |
return model, tokenizer
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
|
|
630 |
model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
|
631 |
|
632 |
|
633 |
+
# Download the file
|
634 |
+
local_file = hf_hub_download(repo_id=checkpoint, filename="cpt.pth")
|
|
|
|
|
|
|
635 |
|
636 |
# Load the best model state
|
637 |
+
state_dict = torch.load(local_file, weights_only=True)
|
638 |
model.load_state_dict(state_dict)
|
639 |
|
640 |
return model, tokenizer
|
.ipynb_checkpoints/requirements-checkpoint.txt
CHANGED
@@ -7,3 +7,4 @@ pandas>=1.1.0
|
|
7 |
numpy>=1.19.0
|
8 |
scikit-learn>=0.24.0
|
9 |
sentencepiece
|
|
|
|
7 |
numpy>=1.19.0
|
8 |
scikit-learn>=0.24.0
|
9 |
sentencepiece
|
10 |
+
huggingface_hub>=0.15.0
|
model_loader.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.nn.functional as F
|
@@ -628,14 +630,11 @@ def load_model():
|
|
628 |
model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
|
629 |
|
630 |
|
631 |
-
|
632 |
-
|
633 |
-
print(checkpoint_dir)
|
634 |
-
# Construct the path to the custom checkpoint file
|
635 |
-
best_model_path = os.path.join(checkpoint_dir, 'cpt.pth')
|
636 |
|
637 |
# Load the best model state
|
638 |
-
state_dict = torch.load(
|
639 |
model.load_state_dict(state_dict)
|
640 |
|
641 |
return model, tokenizer
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
|
|
630 |
model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
|
631 |
|
632 |
|
633 |
+
# Download the file
|
634 |
+
local_file = hf_hub_download(repo_id=checkpoint, filename="cpt.pth")
|
|
|
|
|
|
|
635 |
|
636 |
# Load the best model state
|
637 |
+
state_dict = torch.load(local_file, weights_only=True)
|
638 |
model.load_state_dict(state_dict)
|
639 |
|
640 |
return model, tokenizer
|
requirements.txt
CHANGED
@@ -7,3 +7,4 @@ pandas>=1.1.0
|
|
7 |
numpy>=1.19.0
|
8 |
scikit-learn>=0.24.0
|
9 |
sentencepiece
|
|
|
|
7 |
numpy>=1.19.0
|
8 |
scikit-learn>=0.24.0
|
9 |
sentencepiece
|
10 |
+
huggingface_hub>=0.15.0
|