ThorbenF commited on
Commit
a1fefac
·
1 Parent(s): ce6b085

Update requirements and make necessary code changes

Browse files
.ipynb_checkpoints/model_loader-checkpoint.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import torch
2
  import torch.nn as nn
3
  import torch.nn.functional as F
@@ -628,14 +630,11 @@ def load_model():
628
  model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
629
 
630
 
631
- checkpoint_dir = model.config.name_or_path # This will point to the local directory
632
-
633
- print(checkpoint_dir)
634
- # Construct the path to the custom checkpoint file
635
- best_model_path = os.path.join(checkpoint_dir, 'cpt.pth')
636
 
637
  # Load the best model state
638
- state_dict = torch.load(best_model_path, weights_only=True)
639
  model.load_state_dict(state_dict)
640
 
641
  return model, tokenizer
 
1
+ from huggingface_hub import hf_hub_download
2
+
3
  import torch
4
  import torch.nn as nn
5
  import torch.nn.functional as F
 
630
  model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
631
 
632
 
633
+ # Download the file
634
+ local_file = hf_hub_download(repo_id=checkpoint, filename="cpt.pth")
 
 
 
635
 
636
  # Load the best model state
637
+ state_dict = torch.load(local_file, weights_only=True)
638
  model.load_state_dict(state_dict)
639
 
640
  return model, tokenizer
.ipynb_checkpoints/requirements-checkpoint.txt CHANGED
@@ -7,3 +7,4 @@ pandas>=1.1.0
7
  numpy>=1.19.0
8
  scikit-learn>=0.24.0
9
  sentencepiece
 
 
7
  numpy>=1.19.0
8
  scikit-learn>=0.24.0
9
  sentencepiece
10
+ huggingface_hub>=0.15.0
model_loader.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import torch
2
  import torch.nn as nn
3
  import torch.nn.functional as F
@@ -628,14 +630,11 @@ def load_model():
628
  model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
629
 
630
 
631
- checkpoint_dir = model.config.name_or_path # This will point to the local directory
632
-
633
- print(checkpoint_dir)
634
- # Construct the path to the custom checkpoint file
635
- best_model_path = os.path.join(checkpoint_dir, 'cpt.pth')
636
 
637
  # Load the best model state
638
- state_dict = torch.load(best_model_path, weights_only=True)
639
  model.load_state_dict(state_dict)
640
 
641
  return model, tokenizer
 
1
+ from huggingface_hub import hf_hub_download
2
+
3
  import torch
4
  import torch.nn as nn
5
  import torch.nn.functional as F
 
630
  model, tokenizer = load_T5_model_classification(checkpoint, num_labels, mixed, full, deepspeed)
631
 
632
 
633
+ # Download the file
634
+ local_file = hf_hub_download(repo_id=checkpoint, filename="cpt.pth")
 
 
 
635
 
636
  # Load the best model state
637
+ state_dict = torch.load(local_file, weights_only=True)
638
  model.load_state_dict(state_dict)
639
 
640
  return model, tokenizer
requirements.txt CHANGED
@@ -7,3 +7,4 @@ pandas>=1.1.0
7
  numpy>=1.19.0
8
  scikit-learn>=0.24.0
9
  sentencepiece
 
 
7
  numpy>=1.19.0
8
  scikit-learn>=0.24.0
9
  sentencepiece
10
+ huggingface_hub>=0.15.0