Spaces:
Running
Running
ThorbenFroehlking
commited on
Commit
·
a326e2e
1
Parent(s):
0476cf8
Updated
Browse files
.ipynb_checkpoints/model_loader-checkpoint.py
CHANGED
@@ -279,27 +279,27 @@ def load_T5_model_classification(checkpoint, num_labels, half_precision, full =
|
|
279 |
# Load model and tokenizer
|
280 |
|
281 |
if "ankh" in checkpoint :
|
282 |
-
model = T5EncoderModel.from_pretrained(checkpoint)
|
283 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
284 |
|
285 |
elif "prot_t5" in checkpoint:
|
286 |
# possible to load the half precision model (thanks to @pawel-rezo for pointing that out)
|
287 |
if half_precision and deepspeed:
|
288 |
#tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)
|
289 |
#model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16)#.to(torch.device('cuda')
|
290 |
-
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
|
291 |
-
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
|
292 |
else:
|
293 |
model = T5EncoderModel.from_pretrained(checkpoint)
|
294 |
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
295 |
|
296 |
elif "ProstT5" in checkpoint:
|
297 |
if half_precision and deepspeed:
|
298 |
-
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
|
299 |
-
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
|
300 |
else:
|
301 |
-
model = T5EncoderModel.from_pretrained(checkpoint)
|
302 |
-
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
303 |
|
304 |
# Create new Classifier model with PT5 dimensions
|
305 |
class_config=ClassConfig(num_labels=num_labels)
|
|
|
279 |
# Load model and tokenizer
|
280 |
|
281 |
if "ankh" in checkpoint :
|
282 |
+
model = T5EncoderModel.from_pretrained(checkpoint,resume_download=True)
|
283 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint,resume_download=True)
|
284 |
|
285 |
elif "prot_t5" in checkpoint:
|
286 |
# possible to load the half precision model (thanks to @pawel-rezo for pointing that out)
|
287 |
if half_precision and deepspeed:
|
288 |
#tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)
|
289 |
#model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16)#.to(torch.device('cuda')
|
290 |
+
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False,resume_download=True)
|
291 |
+
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'),resume_download=True)
|
292 |
else:
|
293 |
model = T5EncoderModel.from_pretrained(checkpoint)
|
294 |
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
295 |
|
296 |
elif "ProstT5" in checkpoint:
|
297 |
if half_precision and deepspeed:
|
298 |
+
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False,resume_download=True)
|
299 |
+
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'),resume_download=True)
|
300 |
else:
|
301 |
+
model = T5EncoderModel.from_pretrained(checkpoint,resume_download=True)
|
302 |
+
tokenizer = T5Tokenizer.from_pretrained(checkpoint,resume_download=True)
|
303 |
|
304 |
# Create new Classifier model with PT5 dimensions
|
305 |
class_config=ClassConfig(num_labels=num_labels)
|
model_loader.py
CHANGED
@@ -279,27 +279,27 @@ def load_T5_model_classification(checkpoint, num_labels, half_precision, full =
|
|
279 |
# Load model and tokenizer
|
280 |
|
281 |
if "ankh" in checkpoint :
|
282 |
-
model = T5EncoderModel.from_pretrained(checkpoint)
|
283 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
284 |
|
285 |
elif "prot_t5" in checkpoint:
|
286 |
# possible to load the half precision model (thanks to @pawel-rezo for pointing that out)
|
287 |
if half_precision and deepspeed:
|
288 |
#tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)
|
289 |
#model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16)#.to(torch.device('cuda')
|
290 |
-
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
|
291 |
-
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
|
292 |
else:
|
293 |
model = T5EncoderModel.from_pretrained(checkpoint)
|
294 |
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
295 |
|
296 |
elif "ProstT5" in checkpoint:
|
297 |
if half_precision and deepspeed:
|
298 |
-
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
|
299 |
-
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
|
300 |
else:
|
301 |
-
model = T5EncoderModel.from_pretrained(checkpoint)
|
302 |
-
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
303 |
|
304 |
# Create new Classifier model with PT5 dimensions
|
305 |
class_config=ClassConfig(num_labels=num_labels)
|
|
|
279 |
# Load model and tokenizer
|
280 |
|
281 |
if "ankh" in checkpoint :
|
282 |
+
model = T5EncoderModel.from_pretrained(checkpoint,resume_download=True)
|
283 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint,resume_download=True)
|
284 |
|
285 |
elif "prot_t5" in checkpoint:
|
286 |
# possible to load the half precision model (thanks to @pawel-rezo for pointing that out)
|
287 |
if half_precision and deepspeed:
|
288 |
#tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)
|
289 |
#model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16)#.to(torch.device('cuda')
|
290 |
+
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False,resume_download=True)
|
291 |
+
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'),resume_download=True)
|
292 |
else:
|
293 |
model = T5EncoderModel.from_pretrained(checkpoint)
|
294 |
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
|
295 |
|
296 |
elif "ProstT5" in checkpoint:
|
297 |
if half_precision and deepspeed:
|
298 |
+
tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False,resume_download=True)
|
299 |
+
model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'),resume_download=True)
|
300 |
else:
|
301 |
+
model = T5EncoderModel.from_pretrained(checkpoint,resume_download=True)
|
302 |
+
tokenizer = T5Tokenizer.from_pretrained(checkpoint,resume_download=True)
|
303 |
|
304 |
# Create new Classifier model with PT5 dimensions
|
305 |
class_config=ClassConfig(num_labels=num_labels)
|