ThorbenFroehlking commited on
Commit
a326e2e
·
1 Parent(s): 0476cf8
.ipynb_checkpoints/model_loader-checkpoint.py CHANGED
@@ -279,27 +279,27 @@ def load_T5_model_classification(checkpoint, num_labels, half_precision, full =
279
  # Load model and tokenizer
280
 
281
  if "ankh" in checkpoint :
282
- model = T5EncoderModel.from_pretrained(checkpoint)
283
- tokenizer = AutoTokenizer.from_pretrained(checkpoint)
284
 
285
  elif "prot_t5" in checkpoint:
286
  # possible to load the half precision model (thanks to @pawel-rezo for pointing that out)
287
  if half_precision and deepspeed:
288
  #tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)
289
  #model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16)#.to(torch.device('cuda')
290
- tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
291
- model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
292
  else:
293
  model = T5EncoderModel.from_pretrained(checkpoint)
294
  tokenizer = T5Tokenizer.from_pretrained(checkpoint)
295
 
296
  elif "ProstT5" in checkpoint:
297
  if half_precision and deepspeed:
298
- tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
299
- model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
300
  else:
301
- model = T5EncoderModel.from_pretrained(checkpoint)
302
- tokenizer = T5Tokenizer.from_pretrained(checkpoint)
303
 
304
  # Create new Classifier model with PT5 dimensions
305
  class_config=ClassConfig(num_labels=num_labels)
 
279
  # Load model and tokenizer
280
 
281
  if "ankh" in checkpoint :
282
+ model = T5EncoderModel.from_pretrained(checkpoint,resume_download=True)
283
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint,resume_download=True)
284
 
285
  elif "prot_t5" in checkpoint:
286
  # possible to load the half precision model (thanks to @pawel-rezo for pointing that out)
287
  if half_precision and deepspeed:
288
  #tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)
289
  #model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16)#.to(torch.device('cuda')
290
+ tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False,resume_download=True)
291
+ model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'),resume_download=True)
292
  else:
293
  model = T5EncoderModel.from_pretrained(checkpoint)
294
  tokenizer = T5Tokenizer.from_pretrained(checkpoint)
295
 
296
  elif "ProstT5" in checkpoint:
297
  if half_precision and deepspeed:
298
+ tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False,resume_download=True)
299
+ model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'),resume_download=True)
300
  else:
301
+ model = T5EncoderModel.from_pretrained(checkpoint,resume_download=True)
302
+ tokenizer = T5Tokenizer.from_pretrained(checkpoint,resume_download=True)
303
 
304
  # Create new Classifier model with PT5 dimensions
305
  class_config=ClassConfig(num_labels=num_labels)
model_loader.py CHANGED
@@ -279,27 +279,27 @@ def load_T5_model_classification(checkpoint, num_labels, half_precision, full =
279
  # Load model and tokenizer
280
 
281
  if "ankh" in checkpoint :
282
- model = T5EncoderModel.from_pretrained(checkpoint)
283
- tokenizer = AutoTokenizer.from_pretrained(checkpoint)
284
 
285
  elif "prot_t5" in checkpoint:
286
  # possible to load the half precision model (thanks to @pawel-rezo for pointing that out)
287
  if half_precision and deepspeed:
288
  #tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)
289
  #model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16)#.to(torch.device('cuda')
290
- tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
291
- model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
292
  else:
293
  model = T5EncoderModel.from_pretrained(checkpoint)
294
  tokenizer = T5Tokenizer.from_pretrained(checkpoint)
295
 
296
  elif "ProstT5" in checkpoint:
297
  if half_precision and deepspeed:
298
- tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False)
299
- model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'))
300
  else:
301
- model = T5EncoderModel.from_pretrained(checkpoint)
302
- tokenizer = T5Tokenizer.from_pretrained(checkpoint)
303
 
304
  # Create new Classifier model with PT5 dimensions
305
  class_config=ClassConfig(num_labels=num_labels)
 
279
  # Load model and tokenizer
280
 
281
  if "ankh" in checkpoint :
282
+ model = T5EncoderModel.from_pretrained(checkpoint,resume_download=True)
283
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint,resume_download=True)
284
 
285
  elif "prot_t5" in checkpoint:
286
  # possible to load the half precision model (thanks to @pawel-rezo for pointing that out)
287
  if half_precision and deepspeed:
288
  #tokenizer = T5Tokenizer.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', do_lower_case=False)
289
  #model = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_half_uniref50-enc", torch_dtype=torch.float16)#.to(torch.device('cuda')
290
+ tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False,resume_download=True)
291
+ model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'),resume_download=True)
292
  else:
293
  model = T5EncoderModel.from_pretrained(checkpoint)
294
  tokenizer = T5Tokenizer.from_pretrained(checkpoint)
295
 
296
  elif "ProstT5" in checkpoint:
297
  if half_precision and deepspeed:
298
+ tokenizer = T5Tokenizer.from_pretrained(checkpoint, do_lower_case=False,resume_download=True)
299
+ model = T5EncoderModel.from_pretrained(checkpoint, torch_dtype=torch.float16).to(torch.device('cuda'),resume_download=True)
300
  else:
301
+ model = T5EncoderModel.from_pretrained(checkpoint,resume_download=True)
302
+ tokenizer = T5Tokenizer.from_pretrained(checkpoint,resume_download=True)
303
 
304
  # Create new Classifier model with PT5 dimensions
305
  class_config=ClassConfig(num_labels=num_labels)