Spaces:
Running
Running
ThorbenFroehlking
commited on
Commit
·
fd6cc24
1
Parent(s):
e5b8e7f
Update
Browse files- .ipynb_checkpoints/app-checkpoint.py +22 -11
- .ipynb_checkpoints/test2-checkpoint.ipynb +485 -91
- 2IWI.pdb +0 -0
- 2IWI_predictions.txt +244 -0
- __pycache__/model_loader.cpython-312.pyc +0 -0
- app.py +22 -11
- test2.ipynb +485 -91
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -82,6 +82,10 @@ def process_pdb(pdb_id, segment):
|
|
82 |
for residue in chain
|
83 |
if residue.get_resname().strip() in aa_dict
|
84 |
)
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Prepare input for model prediction
|
87 |
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
@@ -92,6 +96,9 @@ def process_pdb(pdb_id, segment):
|
|
92 |
scores = expit(outputs[:, 1] - outputs[:, 0])
|
93 |
normalized_scores = normalize_scores(scores)
|
94 |
|
|
|
|
|
|
|
95 |
result_str = "\n".join([
|
96 |
f"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
97 |
for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict
|
@@ -102,14 +109,18 @@ def process_pdb(pdb_id, segment):
|
|
102 |
with open(prediction_file, "w") as f:
|
103 |
f.write(result_str)
|
104 |
|
105 |
-
return result_str, molecule(pdb_path,
|
106 |
|
107 |
-
def molecule(input_pdb,
|
108 |
mol = read_mol(input_pdb) # Read PDB file content
|
109 |
|
110 |
# Prepare high-scoring residues script if scores are provided
|
111 |
high_score_script = ""
|
112 |
-
if
|
|
|
|
|
|
|
|
|
113 |
high_score_script = """
|
114 |
// Reset all styles first
|
115 |
viewer.getModel(0).setStyle({}, {});
|
@@ -127,16 +138,16 @@ def molecule(input_pdb, scores=None, segment='A'):
|
|
127 |
{"stick": {"color": "red"}}
|
128 |
);
|
129 |
|
130 |
-
// Highlight
|
131 |
-
let
|
132 |
viewer.getModel(0).setStyle(
|
133 |
-
{"chain": "%s", "resi":
|
134 |
{"stick": {"color": "orange"}}
|
135 |
);
|
136 |
""" % (segment,
|
137 |
-
", ".join(str(
|
138 |
segment,
|
139 |
-
|
140 |
segment)
|
141 |
|
142 |
html_content = f"""
|
@@ -179,7 +190,7 @@ def molecule(input_pdb, scores=None, segment='A'):
|
|
179 |
function(atom, viewer, event, container) {{
|
180 |
if (!atom.label) {{
|
181 |
atom.label = viewer.addLabel(
|
182 |
-
atom.resn + ":" + atom.atom,
|
183 |
{{
|
184 |
position: atom,
|
185 |
backgroundColor: 'mintcream',
|
@@ -246,8 +257,8 @@ with gr.Blocks() as demo:
|
|
246 |
gr.Markdown("## Examples")
|
247 |
gr.Examples(
|
248 |
examples=[
|
249 |
-
["
|
250 |
-
["
|
251 |
["3TJN", "C"]
|
252 |
],
|
253 |
inputs=[pdb_input, segment_input],
|
|
|
82 |
for residue in chain
|
83 |
if residue.get_resname().strip() in aa_dict
|
84 |
)
|
85 |
+
sequence2 = [
|
86 |
+
(res.id[1], res) for res in chain
|
87 |
+
if res.get_resname().strip() in aa_dict
|
88 |
+
]
|
89 |
|
90 |
# Prepare input for model prediction
|
91 |
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
|
|
96 |
scores = expit(outputs[:, 1] - outputs[:, 0])
|
97 |
normalized_scores = normalize_scores(scores)
|
98 |
|
99 |
+
# Zip residues with scores to track the residue ID and score
|
100 |
+
residue_scores = [(resi, score) for (resi, _), score in zip(sequence2, normalized_scores)]
|
101 |
+
|
102 |
result_str = "\n".join([
|
103 |
f"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
104 |
for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict
|
|
|
109 |
with open(prediction_file, "w") as f:
|
110 |
f.write(result_str)
|
111 |
|
112 |
+
return result_str, molecule(pdb_path, residue_scores, segment), prediction_file
|
113 |
|
114 |
+
def molecule(input_pdb, residue_scores=None, segment='A'):
|
115 |
mol = read_mol(input_pdb) # Read PDB file content
|
116 |
|
117 |
# Prepare high-scoring residues script if scores are provided
|
118 |
high_score_script = ""
|
119 |
+
if residue_scores is not None:
|
120 |
+
# Sort residues based on their scores
|
121 |
+
high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
|
122 |
+
mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
|
123 |
+
|
124 |
high_score_script = """
|
125 |
// Reset all styles first
|
126 |
viewer.getModel(0).setStyle({}, {});
|
|
|
138 |
{"stick": {"color": "red"}}
|
139 |
);
|
140 |
|
141 |
+
// Highlight medium-scoring residues only for the selected chain
|
142 |
+
let midScoreResidues = [%s];
|
143 |
viewer.getModel(0).setStyle(
|
144 |
+
{"chain": "%s", "resi": midScoreResidues},
|
145 |
{"stick": {"color": "orange"}}
|
146 |
);
|
147 |
""" % (segment,
|
148 |
+
", ".join(str(resi) for resi in high_score_residues),
|
149 |
segment,
|
150 |
+
", ".join(str(resi) for resi in mid_score_residues),
|
151 |
segment)
|
152 |
|
153 |
html_content = f"""
|
|
|
190 |
function(atom, viewer, event, container) {{
|
191 |
if (!atom.label) {{
|
192 |
atom.label = viewer.addLabel(
|
193 |
+
atom.resn + ":" +atom.resi + ":" + atom.atom,
|
194 |
{{
|
195 |
position: atom,
|
196 |
backgroundColor: 'mintcream',
|
|
|
257 |
gr.Markdown("## Examples")
|
258 |
gr.Examples(
|
259 |
examples=[
|
260 |
+
["7RPZ", "A"],
|
261 |
+
["2IWI", "B"],
|
262 |
["3TJN", "C"]
|
263 |
],
|
264 |
inputs=[pdb_input, segment_input],
|
.ipynb_checkpoints/test2-checkpoint.ipynb
CHANGED
@@ -473,7 +473,7 @@
|
|
473 |
},
|
474 |
{
|
475 |
"cell_type": "code",
|
476 |
-
"execution_count":
|
477 |
"id": "d62be1b5-762e-4b69-aed4-e4ba2a44482f",
|
478 |
"metadata": {},
|
479 |
"outputs": [
|
@@ -481,7 +481,7 @@
|
|
481 |
"name": "stdout",
|
482 |
"output_type": "stream",
|
483 |
"text": [
|
484 |
-
"* Running on local URL: http://127.0.0.1:
|
485 |
"\n",
|
486 |
"To create a public link, set `share=True` in `launch()`.\n"
|
487 |
]
|
@@ -489,7 +489,7 @@
|
|
489 |
{
|
490 |
"data": {
|
491 |
"text/html": [
|
492 |
-
"<div><iframe src=\"http://127.0.0.1:
|
493 |
],
|
494 |
"text/plain": [
|
495 |
"<IPython.core.display.HTML object>"
|
@@ -502,7 +502,7 @@
|
|
502 |
"data": {
|
503 |
"text/plain": []
|
504 |
},
|
505 |
-
"execution_count":
|
506 |
"metadata": {},
|
507 |
"output_type": "execute_result"
|
508 |
}
|
@@ -647,7 +647,7 @@
|
|
647 |
" function(atom, viewer, event, container) {{\n",
|
648 |
" if (!atom.label) {{\n",
|
649 |
" atom.label = viewer.addLabel(\n",
|
650 |
-
" atom.resn + \":\" + atom.atom, \n",
|
651 |
" {{\n",
|
652 |
" position: atom, \n",
|
653 |
" backgroundColor: 'mintcream', \n",
|
@@ -727,16 +727,294 @@
|
|
727 |
},
|
728 |
{
|
729 |
"cell_type": "code",
|
730 |
-
"execution_count":
|
731 |
"id": "30f35243-852f-4771-9a4b-5cdd198552b5",
|
732 |
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
733 |
"outputs": [],
|
734 |
"source": []
|
735 |
},
|
736 |
{
|
737 |
"cell_type": "code",
|
738 |
"execution_count": null,
|
739 |
-
"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
740 |
"metadata": {},
|
741 |
"outputs": [],
|
742 |
"source": [
|
@@ -809,7 +1087,7 @@
|
|
809 |
" except KeyError:\n",
|
810 |
" return \"Invalid Chain ID\", None, None\n",
|
811 |
" \n",
|
812 |
-
"
|
813 |
" aa_dict = {\n",
|
814 |
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
815 |
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
@@ -819,9 +1097,14 @@
|
|
819 |
" }\n",
|
820 |
" \n",
|
821 |
" # Exclude non-amino acid residues\n",
|
822 |
-
" sequence =
|
823 |
-
" residue
|
|
|
824 |
" if residue.get_resname().strip() in aa_dict\n",
|
|
|
|
|
|
|
|
|
825 |
" ]\n",
|
826 |
" \n",
|
827 |
" # Prepare input for model prediction\n",
|
@@ -833,24 +1116,31 @@
|
|
833 |
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
834 |
" normalized_scores = normalize_scores(scores)\n",
|
835 |
"\n",
|
836 |
-
"
|
837 |
-
"
|
838 |
-
"
|
839 |
-
"
|
|
|
|
|
|
|
840 |
" \n",
|
841 |
" # Save the predictions to a file\n",
|
842 |
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
843 |
" with open(prediction_file, \"w\") as f:\n",
|
844 |
" f.write(result_str)\n",
|
845 |
" \n",
|
846 |
-
" return result_str, molecule(pdb_path,
|
847 |
"\n",
|
848 |
-
"def molecule(input_pdb,
|
849 |
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
850 |
" \n",
|
851 |
" # Prepare high-scoring residues script if scores are provided\n",
|
852 |
" high_score_script = \"\"\n",
|
853 |
-
" if
|
|
|
|
|
|
|
|
|
854 |
" high_score_script = \"\"\"\n",
|
855 |
" // Reset all styles first\n",
|
856 |
" viewer.getModel(0).setStyle({}, {});\n",
|
@@ -868,16 +1158,16 @@
|
|
868 |
" {\"stick\": {\"color\": \"red\"}}\n",
|
869 |
" );\n",
|
870 |
"\n",
|
871 |
-
" // Highlight
|
872 |
-
" let
|
873 |
" viewer.getModel(0).setStyle(\n",
|
874 |
-
" {\"chain\": \"%s\", \"resi\":
|
875 |
" {\"stick\": {\"color\": \"orange\"}}\n",
|
876 |
" );\n",
|
877 |
" \"\"\" % (segment, \n",
|
878 |
-
" \", \".join(str(
|
879 |
" segment,\n",
|
880 |
-
"
|
881 |
" segment)\n",
|
882 |
" \n",
|
883 |
" html_content = f\"\"\"\n",
|
@@ -920,7 +1210,7 @@
|
|
920 |
" function(atom, viewer, event, container) {{\n",
|
921 |
" if (!atom.label) {{\n",
|
922 |
" atom.label = viewer.addLabel(\n",
|
923 |
-
" atom.resn + \":\" + atom.atom, \n",
|
924 |
" {{\n",
|
925 |
" position: atom, \n",
|
926 |
" backgroundColor: 'mintcream', \n",
|
@@ -987,21 +1277,21 @@
|
|
987 |
" gr.Markdown(\"## Examples\")\n",
|
988 |
" gr.Examples(\n",
|
989 |
" examples=[\n",
|
990 |
-
" [\"
|
991 |
-
" [\"
|
992 |
" [\"3TJN\", \"C\"]\n",
|
993 |
" ],\n",
|
994 |
" inputs=[pdb_input, segment_input],\n",
|
995 |
" outputs=[predictions_output, molecule_output, download_output]\n",
|
996 |
" )\n",
|
997 |
"\n",
|
998 |
-
"demo.launch()"
|
999 |
]
|
1000 |
},
|
1001 |
{
|
1002 |
"cell_type": "code",
|
1003 |
"execution_count": null,
|
1004 |
-
"id": "
|
1005 |
"metadata": {},
|
1006 |
"outputs": [],
|
1007 |
"source": []
|
@@ -1009,11 +1299,18 @@
|
|
1009 |
{
|
1010 |
"cell_type": "code",
|
1011 |
"execution_count": null,
|
1012 |
-
"id": "
|
1013 |
"metadata": {},
|
1014 |
"outputs": [],
|
1015 |
"source": [
|
1016 |
"import gradio as gr\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1017 |
"from model_loader import load_model\n",
|
1018 |
"\n",
|
1019 |
"import torch\n",
|
@@ -1022,8 +1319,6 @@
|
|
1022 |
"from torch.utils.data import DataLoader\n",
|
1023 |
"\n",
|
1024 |
"import re\n",
|
1025 |
-
"import numpy as np\n",
|
1026 |
-
"import os\n",
|
1027 |
"import pandas as pd\n",
|
1028 |
"import copy\n",
|
1029 |
"\n",
|
@@ -1035,18 +1330,6 @@
|
|
1035 |
"\n",
|
1036 |
"from scipy.special import expit\n",
|
1037 |
"\n",
|
1038 |
-
"import requests\n",
|
1039 |
-
"\n",
|
1040 |
-
"from gradio_molecule3d import Molecule3D\n",
|
1041 |
-
"\n",
|
1042 |
-
"# Biopython imports\n",
|
1043 |
-
"from Bio.PDB import PDBParser, Select, PDBIO\n",
|
1044 |
-
"from Bio.PDB.DSSP import DSSP\n",
|
1045 |
-
"from Bio.PDB import PDBList\n",
|
1046 |
-
"\n",
|
1047 |
-
"from matplotlib import cm # For color mapping\n",
|
1048 |
-
"from matplotlib.colors import Normalize\n",
|
1049 |
-
"\n",
|
1050 |
"# Load model and move to device\n",
|
1051 |
"checkpoint = 'ThorbenF/prot_t5_xl_uniref50'\n",
|
1052 |
"max_length = 1500\n",
|
@@ -1055,23 +1338,26 @@
|
|
1055 |
"model.to(device)\n",
|
1056 |
"model.eval()\n",
|
1057 |
"\n",
|
1058 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1059 |
"def fetch_pdb(pdb_id):\n",
|
1060 |
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
1061 |
-
" pdb_path = f'
|
1062 |
-
" os.makedirs('pdb_files', exist_ok=True)\n",
|
1063 |
" response = requests.get(pdb_url)\n",
|
1064 |
" if response.status_code == 200:\n",
|
1065 |
" with open(pdb_path, 'wb') as f:\n",
|
1066 |
" f.write(response.content)\n",
|
1067 |
" return pdb_path\n",
|
1068 |
-
"
|
1069 |
-
"\n",
|
1070 |
-
"\n",
|
1071 |
-
"def normalize_scores(scores):\n",
|
1072 |
-
" min_score = np.min(scores)\n",
|
1073 |
-
" max_score = np.max(scores)\n",
|
1074 |
-
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
1075 |
"\n",
|
1076 |
"def process_pdb(pdb_id, segment):\n",
|
1077 |
" pdb_path = fetch_pdb(pdb_id)\n",
|
@@ -1080,9 +1366,13 @@
|
|
1080 |
" \n",
|
1081 |
" parser = PDBParser(QUIET=1)\n",
|
1082 |
" structure = parser.get_structure('protein', pdb_path)\n",
|
1083 |
-
" chain = structure[0][segment]\n",
|
1084 |
" \n",
|
1085 |
-
"
|
|
|
|
|
|
|
|
|
|
|
1086 |
" aa_dict = {\n",
|
1087 |
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
1088 |
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
@@ -1106,67 +1396,171 @@
|
|
1106 |
" # Calculate scores and normalize them\n",
|
1107 |
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
1108 |
" normalized_scores = normalize_scores(scores)\n",
|
1109 |
-
"
|
1110 |
-
" # Prepare the result string, including only amino acid residues\n",
|
1111 |
" result_str = \"\\n\".join([\n",
|
1112 |
" f\"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1113 |
" for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict\n",
|
1114 |
" ])\n",
|
1115 |
" \n",
|
1116 |
-
" # Save predictions to file\n",
|
1117 |
-
"
|
|
|
1118 |
" f.write(result_str)\n",
|
1119 |
" \n",
|
1120 |
-
" return result_str, pdb_path,
|
1121 |
"\n",
|
1122 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1123 |
"\n",
|
1124 |
"# Gradio UI\n",
|
1125 |
"with gr.Blocks() as demo:\n",
|
1126 |
-
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
|
|
|
|
|
|
|
|
|
|
1127 |
"\n",
|
1128 |
" with gr.Row():\n",
|
1129 |
-
" pdb_input = gr.Textbox(value=\"2IWI\"
|
1130 |
-
"
|
1131 |
-
"
|
1132 |
-
"
|
1133 |
-
"
|
1134 |
-
" placeholder=\"Enter Chain ID here...\")\n",
|
1135 |
-
" visualize_btn = gr.Button(\"Visualize Sructure\")\n",
|
1136 |
-
" prediction_btn = gr.Button(\"Predict Ligand Binding Site\")\n",
|
1137 |
-
"\n",
|
1138 |
-
" molecule_output = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
1139 |
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1140 |
" download_output = gr.File(label=\"Download Predictions\")\n",
|
1141 |
-
"\n",
|
1142 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=
|
1143 |
-
"
|
1144 |
-
"
|
1145 |
-
"
|
1146 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1147 |
-
" )\n",
|
1148 |
-
"\n",
|
1149 |
" gr.Markdown(\"## Examples\")\n",
|
1150 |
" gr.Examples(\n",
|
1151 |
" examples=[\n",
|
1152 |
-
" [\"2IWI\"],\n",
|
1153 |
-
" [\"7RPZ\"],\n",
|
1154 |
-
" [\"3TJN\"]\n",
|
1155 |
" ],\n",
|
1156 |
-
" inputs=[pdb_input, segment_input]
|
1157 |
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1158 |
" )\n",
|
1159 |
"\n",
|
1160 |
"demo.launch(share=True)"
|
1161 |
]
|
1162 |
-
},
|
1163 |
-
{
|
1164 |
-
"cell_type": "code",
|
1165 |
-
"execution_count": null,
|
1166 |
-
"id": "4c61bac4-4f2e-4f4a-aa1f-30dca209747c",
|
1167 |
-
"metadata": {},
|
1168 |
-
"outputs": [],
|
1169 |
-
"source": []
|
1170 |
}
|
1171 |
],
|
1172 |
"metadata": {
|
|
|
473 |
},
|
474 |
{
|
475 |
"cell_type": "code",
|
476 |
+
"execution_count": 1,
|
477 |
"id": "d62be1b5-762e-4b69-aed4-e4ba2a44482f",
|
478 |
"metadata": {},
|
479 |
"outputs": [
|
|
|
481 |
"name": "stdout",
|
482 |
"output_type": "stream",
|
483 |
"text": [
|
484 |
+
"* Running on local URL: http://127.0.0.1:7860\n",
|
485 |
"\n",
|
486 |
"To create a public link, set `share=True` in `launch()`.\n"
|
487 |
]
|
|
|
489 |
{
|
490 |
"data": {
|
491 |
"text/html": [
|
492 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
493 |
],
|
494 |
"text/plain": [
|
495 |
"<IPython.core.display.HTML object>"
|
|
|
502 |
"data": {
|
503 |
"text/plain": []
|
504 |
},
|
505 |
+
"execution_count": 1,
|
506 |
"metadata": {},
|
507 |
"output_type": "execute_result"
|
508 |
}
|
|
|
647 |
" function(atom, viewer, event, container) {{\n",
|
648 |
" if (!atom.label) {{\n",
|
649 |
" atom.label = viewer.addLabel(\n",
|
650 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
651 |
" {{\n",
|
652 |
" position: atom, \n",
|
653 |
" backgroundColor: 'mintcream', \n",
|
|
|
727 |
},
|
728 |
{
|
729 |
"cell_type": "code",
|
730 |
+
"execution_count": 4,
|
731 |
"id": "30f35243-852f-4771-9a4b-5cdd198552b5",
|
732 |
"metadata": {},
|
733 |
+
"outputs": [
|
734 |
+
{
|
735 |
+
"name": "stdout",
|
736 |
+
"output_type": "stream",
|
737 |
+
"text": [
|
738 |
+
"* Running on local URL: http://127.0.0.1:7863\n",
|
739 |
+
"\n",
|
740 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
741 |
+
]
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"data": {
|
745 |
+
"text/html": [
|
746 |
+
"<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
747 |
+
],
|
748 |
+
"text/plain": [
|
749 |
+
"<IPython.core.display.HTML object>"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
"metadata": {},
|
753 |
+
"output_type": "display_data"
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"data": {
|
757 |
+
"text/plain": []
|
758 |
+
},
|
759 |
+
"execution_count": 4,
|
760 |
+
"metadata": {},
|
761 |
+
"output_type": "execute_result"
|
762 |
+
}
|
763 |
+
],
|
764 |
+
"source": [
|
765 |
+
"import gradio as gr\n",
|
766 |
+
"import requests\n",
|
767 |
+
"from Bio.PDB import PDBParser\n",
|
768 |
+
"import numpy as np\n",
|
769 |
+
"import os\n",
|
770 |
+
"from gradio_molecule3d import Molecule3D\n",
|
771 |
+
"\n",
|
772 |
+
"def read_mol(pdb_path):\n",
|
773 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
774 |
+
" with open(pdb_path, 'r') as f:\n",
|
775 |
+
" return f.read()\n",
|
776 |
+
"\n",
|
777 |
+
"def fetch_pdb(pdb_id):\n",
|
778 |
+
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
779 |
+
" pdb_path = f'{pdb_id}.pdb'\n",
|
780 |
+
" response = requests.get(pdb_url)\n",
|
781 |
+
" if response.status_code == 200:\n",
|
782 |
+
" with open(pdb_path, 'wb') as f:\n",
|
783 |
+
" f.write(response.content)\n",
|
784 |
+
" return pdb_path\n",
|
785 |
+
" else:\n",
|
786 |
+
" return None\n",
|
787 |
+
"\n",
|
788 |
+
"def process_pdb(pdb_id, segment):\n",
|
789 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
790 |
+
" if not pdb_path:\n",
|
791 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
792 |
+
" \n",
|
793 |
+
" parser = PDBParser(QUIET=1)\n",
|
794 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
795 |
+
" \n",
|
796 |
+
" try:\n",
|
797 |
+
" chain = structure[0][segment]\n",
|
798 |
+
" except KeyError:\n",
|
799 |
+
" return \"Invalid Chain ID\", None, None\n",
|
800 |
+
" \n",
|
801 |
+
" # Comprehensive amino acid mapping\n",
|
802 |
+
" aa_dict = {\n",
|
803 |
+
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
804 |
+
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
805 |
+
" 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',\n",
|
806 |
+
" 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',\n",
|
807 |
+
" 'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'\n",
|
808 |
+
" }\n",
|
809 |
+
" \n",
|
810 |
+
" # Exclude non-amino acid residues and create a list of (resi, score) pairs\n",
|
811 |
+
" sequence = [\n",
|
812 |
+
" (res.id[1], res) for res in chain\n",
|
813 |
+
" if res.get_resname().strip() in aa_dict\n",
|
814 |
+
" ]\n",
|
815 |
+
"\n",
|
816 |
+
" random_scores = np.random.rand(len(sequence))\n",
|
817 |
+
" \n",
|
818 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
819 |
+
" residue_scores = [(resi, score) for (resi, _), score in zip(sequence, random_scores)]\n",
|
820 |
+
" \n",
|
821 |
+
" result_str = \"\\n\".join(\n",
|
822 |
+
" f\"{aa_dict[chain[resi].get_resname()]} {resi} {score:.2f}\"\n",
|
823 |
+
" for resi, score in residue_scores\n",
|
824 |
+
" )\n",
|
825 |
+
" \n",
|
826 |
+
" # Save the predictions to a file\n",
|
827 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
828 |
+
" with open(prediction_file, \"w\") as f:\n",
|
829 |
+
" f.write(result_str)\n",
|
830 |
+
" \n",
|
831 |
+
" return result_str, molecule(pdb_path, residue_scores, segment), prediction_file\n",
|
832 |
+
"\n",
|
833 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
834 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
835 |
+
" \n",
|
836 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
837 |
+
" high_score_script = \"\"\n",
|
838 |
+
" if residue_scores is not None:\n",
|
839 |
+
" # Sort residues based on their scores\n",
|
840 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.9]\n",
|
841 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]\n",
|
842 |
+
" \n",
|
843 |
+
" high_score_script = \"\"\"\n",
|
844 |
+
" // Reset all styles first\n",
|
845 |
+
" viewer.getModel(0).setStyle({}, {});\n",
|
846 |
+
" \n",
|
847 |
+
" // Show only the selected chain\n",
|
848 |
+
" viewer.getModel(0).setStyle(\n",
|
849 |
+
" {\"chain\": \"%s\"}, \n",
|
850 |
+
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
851 |
+
" );\n",
|
852 |
+
" \n",
|
853 |
+
" // Highlight high-scoring residues only for the selected chain\n",
|
854 |
+
" let highScoreResidues = [%s];\n",
|
855 |
+
" viewer.getModel(0).setStyle(\n",
|
856 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
857 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
858 |
+
" );\n",
|
859 |
+
"\n",
|
860 |
+
" // Highlight medium-scoring residues only for the selected chain\n",
|
861 |
+
" let midScoreResidues = [%s];\n",
|
862 |
+
" viewer.getModel(0).setStyle(\n",
|
863 |
+
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
864 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
865 |
+
" );\n",
|
866 |
+
" \"\"\" % (segment, \n",
|
867 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
868 |
+
" segment,\n",
|
869 |
+
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
870 |
+
" segment)\n",
|
871 |
+
" \n",
|
872 |
+
" html_content = f\"\"\"\n",
|
873 |
+
" <!DOCTYPE html>\n",
|
874 |
+
" <html>\n",
|
875 |
+
" <head> \n",
|
876 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
877 |
+
" <style>\n",
|
878 |
+
" .mol-container {{\n",
|
879 |
+
" width: 100%;\n",
|
880 |
+
" height: 700px;\n",
|
881 |
+
" position: relative;\n",
|
882 |
+
" }}\n",
|
883 |
+
" </style>\n",
|
884 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
885 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
886 |
+
" </head>\n",
|
887 |
+
" <body>\n",
|
888 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
889 |
+
" <script>\n",
|
890 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
891 |
+
" $(document).ready(function () {{\n",
|
892 |
+
" let element = $(\"#container\");\n",
|
893 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
894 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
895 |
+
" viewer.addModel(pdb, \"pdb\");\n",
|
896 |
+
" \n",
|
897 |
+
" // Reset all styles and show only selected chain\n",
|
898 |
+
" viewer.getModel(0).setStyle(\n",
|
899 |
+
" {{\"chain\": \"{segment}\"}}, \n",
|
900 |
+
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
901 |
+
" );\n",
|
902 |
+
" \n",
|
903 |
+
" {high_score_script}\n",
|
904 |
+
" \n",
|
905 |
+
" // Add hover functionality\n",
|
906 |
+
" viewer.setHoverable(\n",
|
907 |
+
" {{}}, \n",
|
908 |
+
" true, \n",
|
909 |
+
" function(atom, viewer, event, container) {{\n",
|
910 |
+
" if (!atom.label) {{\n",
|
911 |
+
" atom.label = viewer.addLabel(\n",
|
912 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
913 |
+
" {{\n",
|
914 |
+
" position: atom, \n",
|
915 |
+
" backgroundColor: 'mintcream', \n",
|
916 |
+
" fontColor: 'black',\n",
|
917 |
+
" fontSize: 12,\n",
|
918 |
+
" padding: 2\n",
|
919 |
+
" }}\n",
|
920 |
+
" );\n",
|
921 |
+
" }}\n",
|
922 |
+
" }},\n",
|
923 |
+
" function(atom, viewer) {{\n",
|
924 |
+
" if (atom.label) {{\n",
|
925 |
+
" viewer.removeLabel(atom.label);\n",
|
926 |
+
" delete atom.label;\n",
|
927 |
+
" }}\n",
|
928 |
+
" }}\n",
|
929 |
+
" );\n",
|
930 |
+
" \n",
|
931 |
+
" viewer.zoomTo();\n",
|
932 |
+
" viewer.render();\n",
|
933 |
+
" viewer.zoom(0.8, 2000);\n",
|
934 |
+
" }});\n",
|
935 |
+
" </script>\n",
|
936 |
+
" </body>\n",
|
937 |
+
" </html>\n",
|
938 |
+
" \"\"\"\n",
|
939 |
+
" \n",
|
940 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
941 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
942 |
+
"\n",
|
943 |
+
"reps = [\n",
|
944 |
+
" {\n",
|
945 |
+
" \"model\": 0,\n",
|
946 |
+
" \"style\": \"cartoon\",\n",
|
947 |
+
" \"color\": \"whiteCarbon\",\n",
|
948 |
+
" \"residue_range\": \"\",\n",
|
949 |
+
" \"around\": 0,\n",
|
950 |
+
" \"byres\": False,\n",
|
951 |
+
" }\n",
|
952 |
+
" ]\n",
|
953 |
+
"\n",
|
954 |
+
"# Gradio UI\n",
|
955 |
+
"with gr.Blocks() as demo:\n",
|
956 |
+
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
957 |
+
" with gr.Row():\n",
|
958 |
+
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
959 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
960 |
+
"\n",
|
961 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
962 |
+
"\n",
|
963 |
+
" with gr.Row():\n",
|
964 |
+
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
965 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
966 |
+
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
967 |
+
"\n",
|
968 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
969 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
970 |
+
" download_output = gr.File(label=\"Download Predictions\")\n",
|
971 |
+
" \n",
|
972 |
+
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
973 |
+
" \n",
|
974 |
+
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
975 |
+
" \n",
|
976 |
+
" gr.Markdown(\"## Examples\")\n",
|
977 |
+
" gr.Examples(\n",
|
978 |
+
" examples=[\n",
|
979 |
+
" [\"2IWI\", \"A\"],\n",
|
980 |
+
" [\"7RPZ\", \"B\"],\n",
|
981 |
+
" [\"3TJN\", \"C\"]\n",
|
982 |
+
" ],\n",
|
983 |
+
" inputs=[pdb_input, segment_input],\n",
|
984 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
985 |
+
" )\n",
|
986 |
+
"\n",
|
987 |
+
"demo.launch()"
|
988 |
+
]
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"cell_type": "code",
|
992 |
+
"execution_count": null,
|
993 |
+
"id": "6f17feec-0347-4f9d-acd4-ae681c3ed425",
|
994 |
+
"metadata": {},
|
995 |
+
"outputs": [],
|
996 |
+
"source": []
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"cell_type": "code",
|
1000 |
+
"execution_count": null,
|
1001 |
+
"id": "63201f38-adde-4b12-a8d3-f23474d045cf",
|
1002 |
+
"metadata": {},
|
1003 |
"outputs": [],
|
1004 |
"source": []
|
1005 |
},
|
1006 |
{
|
1007 |
"cell_type": "code",
|
1008 |
"execution_count": null,
|
1009 |
+
"id": "5ccbf398-5ef2-4955-98db-99f904f8daa4",
|
1010 |
+
"metadata": {},
|
1011 |
+
"outputs": [],
|
1012 |
+
"source": []
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"cell_type": "code",
|
1016 |
+
"execution_count": null,
|
1017 |
+
"id": "4c61bac4-4f2e-4f4a-aa1f-30dca209747c",
|
1018 |
"metadata": {},
|
1019 |
"outputs": [],
|
1020 |
"source": [
|
|
|
1087 |
" except KeyError:\n",
|
1088 |
" return \"Invalid Chain ID\", None, None\n",
|
1089 |
" \n",
|
1090 |
+
" \n",
|
1091 |
" aa_dict = {\n",
|
1092 |
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
1093 |
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
|
|
1097 |
" }\n",
|
1098 |
" \n",
|
1099 |
" # Exclude non-amino acid residues\n",
|
1100 |
+
" sequence = \"\".join(\n",
|
1101 |
+
" aa_dict[residue.get_resname().strip()] \n",
|
1102 |
+
" for residue in chain \n",
|
1103 |
" if residue.get_resname().strip() in aa_dict\n",
|
1104 |
+
" )\n",
|
1105 |
+
" sequence2 = [\n",
|
1106 |
+
" (res.id[1], res) for res in chain\n",
|
1107 |
+
" if res.get_resname().strip() in aa_dict\n",
|
1108 |
" ]\n",
|
1109 |
" \n",
|
1110 |
" # Prepare input for model prediction\n",
|
|
|
1116 |
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
1117 |
" normalized_scores = normalize_scores(scores)\n",
|
1118 |
"\n",
|
1119 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
1120 |
+
" residue_scores = [(resi, score) for (resi, _), score in zip(sequence2, normalized_scores)]\n",
|
1121 |
+
" \n",
|
1122 |
+
" result_str = \"\\n\".join([\n",
|
1123 |
+
" f\"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1124 |
+
" for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict\n",
|
1125 |
+
" ])\n",
|
1126 |
" \n",
|
1127 |
" # Save the predictions to a file\n",
|
1128 |
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
1129 |
" with open(prediction_file, \"w\") as f:\n",
|
1130 |
" f.write(result_str)\n",
|
1131 |
" \n",
|
1132 |
+
" return result_str, molecule(pdb_path, residue_scores, segment), prediction_file\n",
|
1133 |
"\n",
|
1134 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
1135 |
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
1136 |
" \n",
|
1137 |
" # Prepare high-scoring residues script if scores are provided\n",
|
1138 |
" high_score_script = \"\"\n",
|
1139 |
+
" if residue_scores is not None:\n",
|
1140 |
+
" # Sort residues based on their scores\n",
|
1141 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
1142 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
1143 |
+
" \n",
|
1144 |
" high_score_script = \"\"\"\n",
|
1145 |
" // Reset all styles first\n",
|
1146 |
" viewer.getModel(0).setStyle({}, {});\n",
|
|
|
1158 |
" {\"stick\": {\"color\": \"red\"}}\n",
|
1159 |
" );\n",
|
1160 |
"\n",
|
1161 |
+
" // Highlight medium-scoring residues only for the selected chain\n",
|
1162 |
+
" let midScoreResidues = [%s];\n",
|
1163 |
" viewer.getModel(0).setStyle(\n",
|
1164 |
+
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
1165 |
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1166 |
" );\n",
|
1167 |
" \"\"\" % (segment, \n",
|
1168 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
1169 |
" segment,\n",
|
1170 |
+
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
1171 |
" segment)\n",
|
1172 |
" \n",
|
1173 |
" html_content = f\"\"\"\n",
|
|
|
1210 |
" function(atom, viewer, event, container) {{\n",
|
1211 |
" if (!atom.label) {{\n",
|
1212 |
" atom.label = viewer.addLabel(\n",
|
1213 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
1214 |
" {{\n",
|
1215 |
" position: atom, \n",
|
1216 |
" backgroundColor: 'mintcream', \n",
|
|
|
1277 |
" gr.Markdown(\"## Examples\")\n",
|
1278 |
" gr.Examples(\n",
|
1279 |
" examples=[\n",
|
1280 |
+
" [\"7RPZ\", \"A\"],\n",
|
1281 |
+
" [\"2IWI\", \"B\"],\n",
|
1282 |
" [\"3TJN\", \"C\"]\n",
|
1283 |
" ],\n",
|
1284 |
" inputs=[pdb_input, segment_input],\n",
|
1285 |
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1286 |
" )\n",
|
1287 |
"\n",
|
1288 |
+
"demo.launch(share=True)"
|
1289 |
]
|
1290 |
},
|
1291 |
{
|
1292 |
"cell_type": "code",
|
1293 |
"execution_count": null,
|
1294 |
+
"id": "b61d06ec-a4ee-4f65-925f-d2688730416a",
|
1295 |
"metadata": {},
|
1296 |
"outputs": [],
|
1297 |
"source": []
|
|
|
1299 |
{
|
1300 |
"cell_type": "code",
|
1301 |
"execution_count": null,
|
1302 |
+
"id": "4d67d69f-1f53-4bcc-8905-8d29384c4e20",
|
1303 |
"metadata": {},
|
1304 |
"outputs": [],
|
1305 |
"source": [
|
1306 |
"import gradio as gr\n",
|
1307 |
+
"import requests\n",
|
1308 |
+
"from Bio.PDB import PDBParser\n",
|
1309 |
+
"import numpy as np\n",
|
1310 |
+
"import os\n",
|
1311 |
+
"from gradio_molecule3d import Molecule3D\n",
|
1312 |
+
"\n",
|
1313 |
+
"\n",
|
1314 |
"from model_loader import load_model\n",
|
1315 |
"\n",
|
1316 |
"import torch\n",
|
|
|
1319 |
"from torch.utils.data import DataLoader\n",
|
1320 |
"\n",
|
1321 |
"import re\n",
|
|
|
|
|
1322 |
"import pandas as pd\n",
|
1323 |
"import copy\n",
|
1324 |
"\n",
|
|
|
1330 |
"\n",
|
1331 |
"from scipy.special import expit\n",
|
1332 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1333 |
"# Load model and move to device\n",
|
1334 |
"checkpoint = 'ThorbenF/prot_t5_xl_uniref50'\n",
|
1335 |
"max_length = 1500\n",
|
|
|
1338 |
"model.to(device)\n",
|
1339 |
"model.eval()\n",
|
1340 |
"\n",
|
1341 |
+
"def normalize_scores(scores):\n",
|
1342 |
+
" min_score = np.min(scores)\n",
|
1343 |
+
" max_score = np.max(scores)\n",
|
1344 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
1345 |
+
" \n",
|
1346 |
+
"def read_mol(pdb_path):\n",
|
1347 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
1348 |
+
" with open(pdb_path, 'r') as f:\n",
|
1349 |
+
" return f.read()\n",
|
1350 |
+
"\n",
|
1351 |
"def fetch_pdb(pdb_id):\n",
|
1352 |
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
1353 |
+
" pdb_path = f'{pdb_id}.pdb'\n",
|
|
|
1354 |
" response = requests.get(pdb_url)\n",
|
1355 |
" if response.status_code == 200:\n",
|
1356 |
" with open(pdb_path, 'wb') as f:\n",
|
1357 |
" f.write(response.content)\n",
|
1358 |
" return pdb_path\n",
|
1359 |
+
" else:\n",
|
1360 |
+
" return None\n",
|
|
|
|
|
|
|
|
|
|
|
1361 |
"\n",
|
1362 |
"def process_pdb(pdb_id, segment):\n",
|
1363 |
" pdb_path = fetch_pdb(pdb_id)\n",
|
|
|
1366 |
" \n",
|
1367 |
" parser = PDBParser(QUIET=1)\n",
|
1368 |
" structure = parser.get_structure('protein', pdb_path)\n",
|
|
|
1369 |
" \n",
|
1370 |
+
" try:\n",
|
1371 |
+
" chain = structure[0][segment]\n",
|
1372 |
+
" except KeyError:\n",
|
1373 |
+
" return \"Invalid Chain ID\", None, None\n",
|
1374 |
+
" \n",
|
1375 |
+
" \n",
|
1376 |
" aa_dict = {\n",
|
1377 |
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
1378 |
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
|
|
1396 |
" # Calculate scores and normalize them\n",
|
1397 |
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
1398 |
" normalized_scores = normalize_scores(scores)\n",
|
1399 |
+
"\n",
|
|
|
1400 |
" result_str = \"\\n\".join([\n",
|
1401 |
" f\"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1402 |
" for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict\n",
|
1403 |
" ])\n",
|
1404 |
" \n",
|
1405 |
+
" # Save the predictions to a file\n",
|
1406 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
1407 |
+
" with open(prediction_file, \"w\") as f:\n",
|
1408 |
" f.write(result_str)\n",
|
1409 |
" \n",
|
1410 |
+
" return result_str, molecule(pdb_path, normalized_scores, segment), prediction_file\n",
|
1411 |
"\n",
|
1412 |
+
"def molecule(input_pdb, scores=None, segment='A'):\n",
|
1413 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
1414 |
+
" \n",
|
1415 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
1416 |
+
" high_score_script = \"\"\n",
|
1417 |
+
" if scores is not None:\n",
|
1418 |
+
" high_score_script = \"\"\"\n",
|
1419 |
+
" // Reset all styles first\n",
|
1420 |
+
" viewer.getModel(0).setStyle({}, {});\n",
|
1421 |
+
" \n",
|
1422 |
+
" // Show only the selected chain\n",
|
1423 |
+
" viewer.getModel(0).setStyle(\n",
|
1424 |
+
" {\"chain\": \"%s\"}, \n",
|
1425 |
+
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
1426 |
+
" );\n",
|
1427 |
+
" \n",
|
1428 |
+
" // Highlight high-scoring residues only for the selected chain\n",
|
1429 |
+
" let highScoreResidues = [%s];\n",
|
1430 |
+
" viewer.getModel(0).setStyle(\n",
|
1431 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
1432 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
1433 |
+
" );\n",
|
1434 |
+
"\n",
|
1435 |
+
" // Highlight high-scoring residues only for the selected chain\n",
|
1436 |
+
" let highScoreResidues2 = [%s];\n",
|
1437 |
+
" viewer.getModel(0).setStyle(\n",
|
1438 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues2}, \n",
|
1439 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1440 |
+
" );\n",
|
1441 |
+
" \"\"\" % (segment, \n",
|
1442 |
+
" \", \".join(str(i+1) for i, score in enumerate(scores) if score > 0.8),\n",
|
1443 |
+
" segment,\n",
|
1444 |
+
" \", \".join(str(i+1) for i, score in enumerate(scores) if (score > 0.5) and (score < 0.8)),\n",
|
1445 |
+
" segment)\n",
|
1446 |
+
" \n",
|
1447 |
+
" html_content = f\"\"\"\n",
|
1448 |
+
" <!DOCTYPE html>\n",
|
1449 |
+
" <html>\n",
|
1450 |
+
" <head> \n",
|
1451 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
1452 |
+
" <style>\n",
|
1453 |
+
" .mol-container {{\n",
|
1454 |
+
" width: 100%;\n",
|
1455 |
+
" height: 700px;\n",
|
1456 |
+
" position: relative;\n",
|
1457 |
+
" }}\n",
|
1458 |
+
" </style>\n",
|
1459 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
1460 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
1461 |
+
" </head>\n",
|
1462 |
+
" <body>\n",
|
1463 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
1464 |
+
" <script>\n",
|
1465 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
1466 |
+
" $(document).ready(function () {{\n",
|
1467 |
+
" let element = $(\"#container\");\n",
|
1468 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
1469 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
1470 |
+
" viewer.addModel(pdb, \"pdb\");\n",
|
1471 |
+
" \n",
|
1472 |
+
" // Reset all styles and show only selected chain\n",
|
1473 |
+
" viewer.getModel(0).setStyle(\n",
|
1474 |
+
" {{\"chain\": \"{segment}\"}}, \n",
|
1475 |
+
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
1476 |
+
" );\n",
|
1477 |
+
" \n",
|
1478 |
+
" {high_score_script}\n",
|
1479 |
+
" \n",
|
1480 |
+
" // Add hover functionality\n",
|
1481 |
+
" viewer.setHoverable(\n",
|
1482 |
+
" {{}}, \n",
|
1483 |
+
" true, \n",
|
1484 |
+
" function(atom, viewer, event, container) {{\n",
|
1485 |
+
" if (!atom.label) {{\n",
|
1486 |
+
" atom.label = viewer.addLabel(\n",
|
1487 |
+
" atom.resn + \":\" + atom.atom, \n",
|
1488 |
+
" {{\n",
|
1489 |
+
" position: atom, \n",
|
1490 |
+
" backgroundColor: 'mintcream', \n",
|
1491 |
+
" fontColor: 'black',\n",
|
1492 |
+
" fontSize: 12,\n",
|
1493 |
+
" padding: 2\n",
|
1494 |
+
" }}\n",
|
1495 |
+
" );\n",
|
1496 |
+
" }}\n",
|
1497 |
+
" }},\n",
|
1498 |
+
" function(atom, viewer) {{\n",
|
1499 |
+
" if (atom.label) {{\n",
|
1500 |
+
" viewer.removeLabel(atom.label);\n",
|
1501 |
+
" delete atom.label;\n",
|
1502 |
+
" }}\n",
|
1503 |
+
" }}\n",
|
1504 |
+
" );\n",
|
1505 |
+
" \n",
|
1506 |
+
" viewer.zoomTo();\n",
|
1507 |
+
" viewer.render();\n",
|
1508 |
+
" viewer.zoom(0.8, 2000);\n",
|
1509 |
+
" }});\n",
|
1510 |
+
" </script>\n",
|
1511 |
+
" </body>\n",
|
1512 |
+
" </html>\n",
|
1513 |
+
" \"\"\"\n",
|
1514 |
+
" \n",
|
1515 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
1516 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
1517 |
+
"\n",
|
1518 |
+
"reps = [\n",
|
1519 |
+
" {\n",
|
1520 |
+
" \"model\": 0,\n",
|
1521 |
+
" \"style\": \"cartoon\",\n",
|
1522 |
+
" \"color\": \"whiteCarbon\",\n",
|
1523 |
+
" \"residue_range\": \"\",\n",
|
1524 |
+
" \"around\": 0,\n",
|
1525 |
+
" \"byres\": False,\n",
|
1526 |
+
" }\n",
|
1527 |
+
" ]\n",
|
1528 |
"\n",
|
1529 |
"# Gradio UI\n",
|
1530 |
"with gr.Blocks() as demo:\n",
|
1531 |
+
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
1532 |
+
" with gr.Row():\n",
|
1533 |
+
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1534 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
1535 |
+
"\n",
|
1536 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
1537 |
"\n",
|
1538 |
" with gr.Row():\n",
|
1539 |
+
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1540 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
1541 |
+
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
1542 |
+
"\n",
|
1543 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
|
|
|
|
|
|
|
|
|
|
1544 |
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1545 |
" download_output = gr.File(label=\"Download Predictions\")\n",
|
1546 |
+
" \n",
|
1547 |
+
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
1548 |
+
" \n",
|
1549 |
+
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
1550 |
+
" \n",
|
|
|
|
|
|
|
1551 |
" gr.Markdown(\"## Examples\")\n",
|
1552 |
" gr.Examples(\n",
|
1553 |
" examples=[\n",
|
1554 |
+
" [\"2IWI\", \"A\"],\n",
|
1555 |
+
" [\"7RPZ\", \"B\"],\n",
|
1556 |
+
" [\"3TJN\", \"C\"]\n",
|
1557 |
" ],\n",
|
1558 |
+
" inputs=[pdb_input, segment_input],\n",
|
1559 |
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1560 |
" )\n",
|
1561 |
"\n",
|
1562 |
"demo.launch(share=True)"
|
1563 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1564 |
}
|
1565 |
],
|
1566 |
"metadata": {
|
2IWI.pdb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
2IWI_predictions.txt
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Y 32 0.32
|
2 |
+
R 33 0.91
|
3 |
+
L 34 0.65
|
4 |
+
G 35 0.50
|
5 |
+
P 36 0.82
|
6 |
+
L 37 0.90
|
7 |
+
L 38 0.19
|
8 |
+
G 39 0.33
|
9 |
+
K 40 0.10
|
10 |
+
G 41 0.23
|
11 |
+
G 42 0.54
|
12 |
+
F 43 0.58
|
13 |
+
G 44 0.25
|
14 |
+
T 45 0.06
|
15 |
+
V 46 0.10
|
16 |
+
F 47 0.20
|
17 |
+
A 48 0.34
|
18 |
+
G 49 0.10
|
19 |
+
H 50 0.59
|
20 |
+
R 51 0.12
|
21 |
+
L 52 0.03
|
22 |
+
T 53 0.86
|
23 |
+
D 54 0.08
|
24 |
+
R 55 0.57
|
25 |
+
L 56 0.96
|
26 |
+
Q 57 0.75
|
27 |
+
V 58 0.91
|
28 |
+
A 59 0.80
|
29 |
+
I 60 0.49
|
30 |
+
K 61 0.52
|
31 |
+
V 62 0.29
|
32 |
+
I 63 0.87
|
33 |
+
P 64 0.60
|
34 |
+
R 65 0.99
|
35 |
+
N 66 0.50
|
36 |
+
R 67 0.51
|
37 |
+
V 68 0.79
|
38 |
+
L 69 0.16
|
39 |
+
V 78 0.06
|
40 |
+
T 79 0.89
|
41 |
+
C 80 0.33
|
42 |
+
P 81 0.40
|
43 |
+
L 82 0.84
|
44 |
+
E 83 0.07
|
45 |
+
V 84 0.47
|
46 |
+
A 85 0.67
|
47 |
+
L 86 0.89
|
48 |
+
L 87 0.86
|
49 |
+
W 88 0.04
|
50 |
+
K 89 0.34
|
51 |
+
V 90 0.53
|
52 |
+
G 91 0.83
|
53 |
+
A 92 0.80
|
54 |
+
G 93 0.85
|
55 |
+
G 94 0.42
|
56 |
+
G 95 0.08
|
57 |
+
H 96 0.24
|
58 |
+
P 97 0.78
|
59 |
+
G 98 0.38
|
60 |
+
V 99 0.39
|
61 |
+
I 100 0.21
|
62 |
+
R 101 0.77
|
63 |
+
L 102 0.61
|
64 |
+
L 103 0.50
|
65 |
+
D 104 0.13
|
66 |
+
W 105 0.76
|
67 |
+
F 106 0.45
|
68 |
+
F 112 0.89
|
69 |
+
M 113 0.39
|
70 |
+
L 114 0.11
|
71 |
+
V 115 0.56
|
72 |
+
L 116 0.04
|
73 |
+
E 117 0.62
|
74 |
+
R 118 0.39
|
75 |
+
P 119 0.72
|
76 |
+
L 120 0.38
|
77 |
+
P 121 0.35
|
78 |
+
A 122 0.03
|
79 |
+
Q 123 0.85
|
80 |
+
D 124 0.49
|
81 |
+
L 125 0.19
|
82 |
+
F 126 0.78
|
83 |
+
D 127 0.52
|
84 |
+
Y 128 0.88
|
85 |
+
I 129 0.85
|
86 |
+
T 130 0.82
|
87 |
+
E 131 0.27
|
88 |
+
K 132 0.67
|
89 |
+
G 133 0.41
|
90 |
+
P 134 0.95
|
91 |
+
L 135 0.36
|
92 |
+
G 136 0.52
|
93 |
+
E 137 0.14
|
94 |
+
G 138 0.95
|
95 |
+
P 139 0.57
|
96 |
+
S 140 0.27
|
97 |
+
R 141 0.92
|
98 |
+
C 142 0.13
|
99 |
+
F 143 0.18
|
100 |
+
F 144 0.12
|
101 |
+
G 145 0.32
|
102 |
+
Q 146 0.35
|
103 |
+
V 147 0.95
|
104 |
+
V 148 0.89
|
105 |
+
A 149 0.76
|
106 |
+
A 150 0.43
|
107 |
+
I 151 0.09
|
108 |
+
Q 152 0.89
|
109 |
+
H 153 0.54
|
110 |
+
C 154 0.47
|
111 |
+
H 155 0.05
|
112 |
+
S 156 0.10
|
113 |
+
R 157 0.64
|
114 |
+
G 158 0.32
|
115 |
+
V 159 0.41
|
116 |
+
V 160 0.18
|
117 |
+
H 161 0.63
|
118 |
+
R 162 0.14
|
119 |
+
D 163 0.03
|
120 |
+
I 164 0.63
|
121 |
+
K 165 0.97
|
122 |
+
D 166 0.73
|
123 |
+
E 167 0.96
|
124 |
+
N 168 0.25
|
125 |
+
I 169 0.37
|
126 |
+
L 170 0.79
|
127 |
+
I 171 0.26
|
128 |
+
D 172 0.80
|
129 |
+
L 173 0.98
|
130 |
+
R 174 0.06
|
131 |
+
R 175 0.56
|
132 |
+
G 176 0.29
|
133 |
+
C 177 0.43
|
134 |
+
A 178 0.17
|
135 |
+
K 179 0.52
|
136 |
+
L 180 0.51
|
137 |
+
I 181 0.54
|
138 |
+
D 182 0.04
|
139 |
+
F 183 0.33
|
140 |
+
G 184 0.05
|
141 |
+
S 185 0.92
|
142 |
+
G 186 0.92
|
143 |
+
A 187 0.83
|
144 |
+
L 188 0.49
|
145 |
+
L 189 0.88
|
146 |
+
H 190 0.60
|
147 |
+
D 191 0.17
|
148 |
+
E 192 0.17
|
149 |
+
P 193 0.31
|
150 |
+
Y 194 0.61
|
151 |
+
T 195 0.02
|
152 |
+
D 196 0.11
|
153 |
+
F 197 0.33
|
154 |
+
D 198 0.85
|
155 |
+
G 199 0.82
|
156 |
+
T 200 0.10
|
157 |
+
R 201 0.69
|
158 |
+
V 202 0.70
|
159 |
+
Y 203 0.21
|
160 |
+
S 204 0.80
|
161 |
+
P 205 0.65
|
162 |
+
P 206 0.75
|
163 |
+
E 207 0.01
|
164 |
+
W 208 0.81
|
165 |
+
I 209 0.83
|
166 |
+
S 210 0.72
|
167 |
+
R 211 0.80
|
168 |
+
H 212 0.64
|
169 |
+
Q 213 0.36
|
170 |
+
Y 214 0.54
|
171 |
+
H 215 0.97
|
172 |
+
A 216 0.75
|
173 |
+
L 217 0.54
|
174 |
+
P 218 0.25
|
175 |
+
A 219 0.04
|
176 |
+
T 220 0.28
|
177 |
+
V 221 0.46
|
178 |
+
W 222 0.67
|
179 |
+
S 223 0.24
|
180 |
+
L 224 0.05
|
181 |
+
G 225 0.65
|
182 |
+
I 226 0.42
|
183 |
+
L 227 0.46
|
184 |
+
L 228 0.12
|
185 |
+
Y 229 0.68
|
186 |
+
D 230 0.82
|
187 |
+
M 231 0.51
|
188 |
+
V 232 0.75
|
189 |
+
C 233 0.41
|
190 |
+
G 234 0.54
|
191 |
+
D 235 0.43
|
192 |
+
I 236 0.09
|
193 |
+
P 237 0.12
|
194 |
+
F 238 0.80
|
195 |
+
E 239 0.57
|
196 |
+
R 240 0.42
|
197 |
+
D 241 0.34
|
198 |
+
Q 242 0.08
|
199 |
+
E 243 0.40
|
200 |
+
I 244 0.68
|
201 |
+
L 245 0.09
|
202 |
+
E 246 0.75
|
203 |
+
A 247 0.38
|
204 |
+
E 248 0.68
|
205 |
+
L 249 0.62
|
206 |
+
H 250 0.56
|
207 |
+
F 251 0.08
|
208 |
+
P 252 0.60
|
209 |
+
A 253 0.12
|
210 |
+
H 254 0.77
|
211 |
+
V 255 0.92
|
212 |
+
S 256 0.67
|
213 |
+
P 257 0.48
|
214 |
+
D 258 0.27
|
215 |
+
C 259 0.90
|
216 |
+
C 260 0.16
|
217 |
+
A 261 0.50
|
218 |
+
L 262 0.78
|
219 |
+
I 263 0.11
|
220 |
+
R 264 0.67
|
221 |
+
R 265 0.85
|
222 |
+
C 266 0.80
|
223 |
+
L 267 0.11
|
224 |
+
A 268 0.95
|
225 |
+
P 269 0.30
|
226 |
+
K 270 0.34
|
227 |
+
P 271 0.85
|
228 |
+
S 272 0.94
|
229 |
+
S 273 0.04
|
230 |
+
R 274 0.83
|
231 |
+
P 275 0.68
|
232 |
+
S 276 0.16
|
233 |
+
L 277 0.13
|
234 |
+
E 278 0.74
|
235 |
+
E 279 0.28
|
236 |
+
I 280 0.45
|
237 |
+
L 281 0.46
|
238 |
+
L 282 0.23
|
239 |
+
D 283 0.24
|
240 |
+
P 284 0.58
|
241 |
+
W 285 0.78
|
242 |
+
M 286 0.59
|
243 |
+
Q 287 0.30
|
244 |
+
T 288 0.30
|
__pycache__/model_loader.cpython-312.pyc
ADDED
Binary file (32.5 kB). View file
|
|
app.py
CHANGED
@@ -82,6 +82,10 @@ def process_pdb(pdb_id, segment):
|
|
82 |
for residue in chain
|
83 |
if residue.get_resname().strip() in aa_dict
|
84 |
)
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Prepare input for model prediction
|
87 |
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
@@ -92,6 +96,9 @@ def process_pdb(pdb_id, segment):
|
|
92 |
scores = expit(outputs[:, 1] - outputs[:, 0])
|
93 |
normalized_scores = normalize_scores(scores)
|
94 |
|
|
|
|
|
|
|
95 |
result_str = "\n".join([
|
96 |
f"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
97 |
for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict
|
@@ -102,14 +109,18 @@ def process_pdb(pdb_id, segment):
|
|
102 |
with open(prediction_file, "w") as f:
|
103 |
f.write(result_str)
|
104 |
|
105 |
-
return result_str, molecule(pdb_path,
|
106 |
|
107 |
-
def molecule(input_pdb,
|
108 |
mol = read_mol(input_pdb) # Read PDB file content
|
109 |
|
110 |
# Prepare high-scoring residues script if scores are provided
|
111 |
high_score_script = ""
|
112 |
-
if
|
|
|
|
|
|
|
|
|
113 |
high_score_script = """
|
114 |
// Reset all styles first
|
115 |
viewer.getModel(0).setStyle({}, {});
|
@@ -127,16 +138,16 @@ def molecule(input_pdb, scores=None, segment='A'):
|
|
127 |
{"stick": {"color": "red"}}
|
128 |
);
|
129 |
|
130 |
-
// Highlight
|
131 |
-
let
|
132 |
viewer.getModel(0).setStyle(
|
133 |
-
{"chain": "%s", "resi":
|
134 |
{"stick": {"color": "orange"}}
|
135 |
);
|
136 |
""" % (segment,
|
137 |
-
", ".join(str(
|
138 |
segment,
|
139 |
-
|
140 |
segment)
|
141 |
|
142 |
html_content = f"""
|
@@ -179,7 +190,7 @@ def molecule(input_pdb, scores=None, segment='A'):
|
|
179 |
function(atom, viewer, event, container) {{
|
180 |
if (!atom.label) {{
|
181 |
atom.label = viewer.addLabel(
|
182 |
-
atom.resn + ":" + atom.atom,
|
183 |
{{
|
184 |
position: atom,
|
185 |
backgroundColor: 'mintcream',
|
@@ -246,8 +257,8 @@ with gr.Blocks() as demo:
|
|
246 |
gr.Markdown("## Examples")
|
247 |
gr.Examples(
|
248 |
examples=[
|
249 |
-
["
|
250 |
-
["
|
251 |
["3TJN", "C"]
|
252 |
],
|
253 |
inputs=[pdb_input, segment_input],
|
|
|
82 |
for residue in chain
|
83 |
if residue.get_resname().strip() in aa_dict
|
84 |
)
|
85 |
+
sequence2 = [
|
86 |
+
(res.id[1], res) for res in chain
|
87 |
+
if res.get_resname().strip() in aa_dict
|
88 |
+
]
|
89 |
|
90 |
# Prepare input for model prediction
|
91 |
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
|
|
96 |
scores = expit(outputs[:, 1] - outputs[:, 0])
|
97 |
normalized_scores = normalize_scores(scores)
|
98 |
|
99 |
+
# Zip residues with scores to track the residue ID and score
|
100 |
+
residue_scores = [(resi, score) for (resi, _), score in zip(sequence2, normalized_scores)]
|
101 |
+
|
102 |
result_str = "\n".join([
|
103 |
f"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
104 |
for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict
|
|
|
109 |
with open(prediction_file, "w") as f:
|
110 |
f.write(result_str)
|
111 |
|
112 |
+
return result_str, molecule(pdb_path, residue_scores, segment), prediction_file
|
113 |
|
114 |
+
def molecule(input_pdb, residue_scores=None, segment='A'):
|
115 |
mol = read_mol(input_pdb) # Read PDB file content
|
116 |
|
117 |
# Prepare high-scoring residues script if scores are provided
|
118 |
high_score_script = ""
|
119 |
+
if residue_scores is not None:
|
120 |
+
# Sort residues based on their scores
|
121 |
+
high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
|
122 |
+
mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
|
123 |
+
|
124 |
high_score_script = """
|
125 |
// Reset all styles first
|
126 |
viewer.getModel(0).setStyle({}, {});
|
|
|
138 |
{"stick": {"color": "red"}}
|
139 |
);
|
140 |
|
141 |
+
// Highlight medium-scoring residues only for the selected chain
|
142 |
+
let midScoreResidues = [%s];
|
143 |
viewer.getModel(0).setStyle(
|
144 |
+
{"chain": "%s", "resi": midScoreResidues},
|
145 |
{"stick": {"color": "orange"}}
|
146 |
);
|
147 |
""" % (segment,
|
148 |
+
", ".join(str(resi) for resi in high_score_residues),
|
149 |
segment,
|
150 |
+
", ".join(str(resi) for resi in mid_score_residues),
|
151 |
segment)
|
152 |
|
153 |
html_content = f"""
|
|
|
190 |
function(atom, viewer, event, container) {{
|
191 |
if (!atom.label) {{
|
192 |
atom.label = viewer.addLabel(
|
193 |
+
atom.resn + ":" +atom.resi + ":" + atom.atom,
|
194 |
{{
|
195 |
position: atom,
|
196 |
backgroundColor: 'mintcream',
|
|
|
257 |
gr.Markdown("## Examples")
|
258 |
gr.Examples(
|
259 |
examples=[
|
260 |
+
["7RPZ", "A"],
|
261 |
+
["2IWI", "B"],
|
262 |
["3TJN", "C"]
|
263 |
],
|
264 |
inputs=[pdb_input, segment_input],
|
test2.ipynb
CHANGED
@@ -473,7 +473,7 @@
|
|
473 |
},
|
474 |
{
|
475 |
"cell_type": "code",
|
476 |
-
"execution_count":
|
477 |
"id": "d62be1b5-762e-4b69-aed4-e4ba2a44482f",
|
478 |
"metadata": {},
|
479 |
"outputs": [
|
@@ -481,7 +481,7 @@
|
|
481 |
"name": "stdout",
|
482 |
"output_type": "stream",
|
483 |
"text": [
|
484 |
-
"* Running on local URL: http://127.0.0.1:
|
485 |
"\n",
|
486 |
"To create a public link, set `share=True` in `launch()`.\n"
|
487 |
]
|
@@ -489,7 +489,7 @@
|
|
489 |
{
|
490 |
"data": {
|
491 |
"text/html": [
|
492 |
-
"<div><iframe src=\"http://127.0.0.1:
|
493 |
],
|
494 |
"text/plain": [
|
495 |
"<IPython.core.display.HTML object>"
|
@@ -502,7 +502,7 @@
|
|
502 |
"data": {
|
503 |
"text/plain": []
|
504 |
},
|
505 |
-
"execution_count":
|
506 |
"metadata": {},
|
507 |
"output_type": "execute_result"
|
508 |
}
|
@@ -647,7 +647,7 @@
|
|
647 |
" function(atom, viewer, event, container) {{\n",
|
648 |
" if (!atom.label) {{\n",
|
649 |
" atom.label = viewer.addLabel(\n",
|
650 |
-
" atom.resn + \":\" + atom.atom, \n",
|
651 |
" {{\n",
|
652 |
" position: atom, \n",
|
653 |
" backgroundColor: 'mintcream', \n",
|
@@ -727,16 +727,294 @@
|
|
727 |
},
|
728 |
{
|
729 |
"cell_type": "code",
|
730 |
-
"execution_count":
|
731 |
"id": "30f35243-852f-4771-9a4b-5cdd198552b5",
|
732 |
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
733 |
"outputs": [],
|
734 |
"source": []
|
735 |
},
|
736 |
{
|
737 |
"cell_type": "code",
|
738 |
"execution_count": null,
|
739 |
-
"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
740 |
"metadata": {},
|
741 |
"outputs": [],
|
742 |
"source": [
|
@@ -809,7 +1087,7 @@
|
|
809 |
" except KeyError:\n",
|
810 |
" return \"Invalid Chain ID\", None, None\n",
|
811 |
" \n",
|
812 |
-
"
|
813 |
" aa_dict = {\n",
|
814 |
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
815 |
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
@@ -819,9 +1097,14 @@
|
|
819 |
" }\n",
|
820 |
" \n",
|
821 |
" # Exclude non-amino acid residues\n",
|
822 |
-
" sequence =
|
823 |
-
" residue
|
|
|
824 |
" if residue.get_resname().strip() in aa_dict\n",
|
|
|
|
|
|
|
|
|
825 |
" ]\n",
|
826 |
" \n",
|
827 |
" # Prepare input for model prediction\n",
|
@@ -833,24 +1116,31 @@
|
|
833 |
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
834 |
" normalized_scores = normalize_scores(scores)\n",
|
835 |
"\n",
|
836 |
-
"
|
837 |
-
"
|
838 |
-
"
|
839 |
-
"
|
|
|
|
|
|
|
840 |
" \n",
|
841 |
" # Save the predictions to a file\n",
|
842 |
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
843 |
" with open(prediction_file, \"w\") as f:\n",
|
844 |
" f.write(result_str)\n",
|
845 |
" \n",
|
846 |
-
" return result_str, molecule(pdb_path,
|
847 |
"\n",
|
848 |
-
"def molecule(input_pdb,
|
849 |
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
850 |
" \n",
|
851 |
" # Prepare high-scoring residues script if scores are provided\n",
|
852 |
" high_score_script = \"\"\n",
|
853 |
-
" if
|
|
|
|
|
|
|
|
|
854 |
" high_score_script = \"\"\"\n",
|
855 |
" // Reset all styles first\n",
|
856 |
" viewer.getModel(0).setStyle({}, {});\n",
|
@@ -868,16 +1158,16 @@
|
|
868 |
" {\"stick\": {\"color\": \"red\"}}\n",
|
869 |
" );\n",
|
870 |
"\n",
|
871 |
-
" // Highlight
|
872 |
-
" let
|
873 |
" viewer.getModel(0).setStyle(\n",
|
874 |
-
" {\"chain\": \"%s\", \"resi\":
|
875 |
" {\"stick\": {\"color\": \"orange\"}}\n",
|
876 |
" );\n",
|
877 |
" \"\"\" % (segment, \n",
|
878 |
-
" \", \".join(str(
|
879 |
" segment,\n",
|
880 |
-
"
|
881 |
" segment)\n",
|
882 |
" \n",
|
883 |
" html_content = f\"\"\"\n",
|
@@ -920,7 +1210,7 @@
|
|
920 |
" function(atom, viewer, event, container) {{\n",
|
921 |
" if (!atom.label) {{\n",
|
922 |
" atom.label = viewer.addLabel(\n",
|
923 |
-
" atom.resn + \":\" + atom.atom, \n",
|
924 |
" {{\n",
|
925 |
" position: atom, \n",
|
926 |
" backgroundColor: 'mintcream', \n",
|
@@ -987,21 +1277,21 @@
|
|
987 |
" gr.Markdown(\"## Examples\")\n",
|
988 |
" gr.Examples(\n",
|
989 |
" examples=[\n",
|
990 |
-
" [\"
|
991 |
-
" [\"
|
992 |
" [\"3TJN\", \"C\"]\n",
|
993 |
" ],\n",
|
994 |
" inputs=[pdb_input, segment_input],\n",
|
995 |
" outputs=[predictions_output, molecule_output, download_output]\n",
|
996 |
" )\n",
|
997 |
"\n",
|
998 |
-
"demo.launch()"
|
999 |
]
|
1000 |
},
|
1001 |
{
|
1002 |
"cell_type": "code",
|
1003 |
"execution_count": null,
|
1004 |
-
"id": "
|
1005 |
"metadata": {},
|
1006 |
"outputs": [],
|
1007 |
"source": []
|
@@ -1009,11 +1299,18 @@
|
|
1009 |
{
|
1010 |
"cell_type": "code",
|
1011 |
"execution_count": null,
|
1012 |
-
"id": "
|
1013 |
"metadata": {},
|
1014 |
"outputs": [],
|
1015 |
"source": [
|
1016 |
"import gradio as gr\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1017 |
"from model_loader import load_model\n",
|
1018 |
"\n",
|
1019 |
"import torch\n",
|
@@ -1022,8 +1319,6 @@
|
|
1022 |
"from torch.utils.data import DataLoader\n",
|
1023 |
"\n",
|
1024 |
"import re\n",
|
1025 |
-
"import numpy as np\n",
|
1026 |
-
"import os\n",
|
1027 |
"import pandas as pd\n",
|
1028 |
"import copy\n",
|
1029 |
"\n",
|
@@ -1035,18 +1330,6 @@
|
|
1035 |
"\n",
|
1036 |
"from scipy.special import expit\n",
|
1037 |
"\n",
|
1038 |
-
"import requests\n",
|
1039 |
-
"\n",
|
1040 |
-
"from gradio_molecule3d import Molecule3D\n",
|
1041 |
-
"\n",
|
1042 |
-
"# Biopython imports\n",
|
1043 |
-
"from Bio.PDB import PDBParser, Select, PDBIO\n",
|
1044 |
-
"from Bio.PDB.DSSP import DSSP\n",
|
1045 |
-
"from Bio.PDB import PDBList\n",
|
1046 |
-
"\n",
|
1047 |
-
"from matplotlib import cm # For color mapping\n",
|
1048 |
-
"from matplotlib.colors import Normalize\n",
|
1049 |
-
"\n",
|
1050 |
"# Load model and move to device\n",
|
1051 |
"checkpoint = 'ThorbenF/prot_t5_xl_uniref50'\n",
|
1052 |
"max_length = 1500\n",
|
@@ -1055,23 +1338,26 @@
|
|
1055 |
"model.to(device)\n",
|
1056 |
"model.eval()\n",
|
1057 |
"\n",
|
1058 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1059 |
"def fetch_pdb(pdb_id):\n",
|
1060 |
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
1061 |
-
" pdb_path = f'
|
1062 |
-
" os.makedirs('pdb_files', exist_ok=True)\n",
|
1063 |
" response = requests.get(pdb_url)\n",
|
1064 |
" if response.status_code == 200:\n",
|
1065 |
" with open(pdb_path, 'wb') as f:\n",
|
1066 |
" f.write(response.content)\n",
|
1067 |
" return pdb_path\n",
|
1068 |
-
"
|
1069 |
-
"\n",
|
1070 |
-
"\n",
|
1071 |
-
"def normalize_scores(scores):\n",
|
1072 |
-
" min_score = np.min(scores)\n",
|
1073 |
-
" max_score = np.max(scores)\n",
|
1074 |
-
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
1075 |
"\n",
|
1076 |
"def process_pdb(pdb_id, segment):\n",
|
1077 |
" pdb_path = fetch_pdb(pdb_id)\n",
|
@@ -1080,9 +1366,13 @@
|
|
1080 |
" \n",
|
1081 |
" parser = PDBParser(QUIET=1)\n",
|
1082 |
" structure = parser.get_structure('protein', pdb_path)\n",
|
1083 |
-
" chain = structure[0][segment]\n",
|
1084 |
" \n",
|
1085 |
-
"
|
|
|
|
|
|
|
|
|
|
|
1086 |
" aa_dict = {\n",
|
1087 |
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
1088 |
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
@@ -1106,67 +1396,171 @@
|
|
1106 |
" # Calculate scores and normalize them\n",
|
1107 |
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
1108 |
" normalized_scores = normalize_scores(scores)\n",
|
1109 |
-
"
|
1110 |
-
" # Prepare the result string, including only amino acid residues\n",
|
1111 |
" result_str = \"\\n\".join([\n",
|
1112 |
" f\"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1113 |
" for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict\n",
|
1114 |
" ])\n",
|
1115 |
" \n",
|
1116 |
-
" # Save predictions to file\n",
|
1117 |
-
"
|
|
|
1118 |
" f.write(result_str)\n",
|
1119 |
" \n",
|
1120 |
-
" return result_str, pdb_path,
|
1121 |
"\n",
|
1122 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1123 |
"\n",
|
1124 |
"# Gradio UI\n",
|
1125 |
"with gr.Blocks() as demo:\n",
|
1126 |
-
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
|
|
|
|
|
|
|
|
|
|
1127 |
"\n",
|
1128 |
" with gr.Row():\n",
|
1129 |
-
" pdb_input = gr.Textbox(value=\"2IWI\"
|
1130 |
-
"
|
1131 |
-
"
|
1132 |
-
"
|
1133 |
-
"
|
1134 |
-
" placeholder=\"Enter Chain ID here...\")\n",
|
1135 |
-
" visualize_btn = gr.Button(\"Visualize Sructure\")\n",
|
1136 |
-
" prediction_btn = gr.Button(\"Predict Ligand Binding Site\")\n",
|
1137 |
-
"\n",
|
1138 |
-
" molecule_output = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
1139 |
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1140 |
" download_output = gr.File(label=\"Download Predictions\")\n",
|
1141 |
-
"\n",
|
1142 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=
|
1143 |
-
"
|
1144 |
-
"
|
1145 |
-
"
|
1146 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1147 |
-
" )\n",
|
1148 |
-
"\n",
|
1149 |
" gr.Markdown(\"## Examples\")\n",
|
1150 |
" gr.Examples(\n",
|
1151 |
" examples=[\n",
|
1152 |
-
" [\"2IWI\"],\n",
|
1153 |
-
" [\"7RPZ\"],\n",
|
1154 |
-
" [\"3TJN\"]\n",
|
1155 |
" ],\n",
|
1156 |
-
" inputs=[pdb_input, segment_input]
|
1157 |
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1158 |
" )\n",
|
1159 |
"\n",
|
1160 |
"demo.launch(share=True)"
|
1161 |
]
|
1162 |
-
},
|
1163 |
-
{
|
1164 |
-
"cell_type": "code",
|
1165 |
-
"execution_count": null,
|
1166 |
-
"id": "4c61bac4-4f2e-4f4a-aa1f-30dca209747c",
|
1167 |
-
"metadata": {},
|
1168 |
-
"outputs": [],
|
1169 |
-
"source": []
|
1170 |
}
|
1171 |
],
|
1172 |
"metadata": {
|
|
|
473 |
},
|
474 |
{
|
475 |
"cell_type": "code",
|
476 |
+
"execution_count": 1,
|
477 |
"id": "d62be1b5-762e-4b69-aed4-e4ba2a44482f",
|
478 |
"metadata": {},
|
479 |
"outputs": [
|
|
|
481 |
"name": "stdout",
|
482 |
"output_type": "stream",
|
483 |
"text": [
|
484 |
+
"* Running on local URL: http://127.0.0.1:7860\n",
|
485 |
"\n",
|
486 |
"To create a public link, set `share=True` in `launch()`.\n"
|
487 |
]
|
|
|
489 |
{
|
490 |
"data": {
|
491 |
"text/html": [
|
492 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
493 |
],
|
494 |
"text/plain": [
|
495 |
"<IPython.core.display.HTML object>"
|
|
|
502 |
"data": {
|
503 |
"text/plain": []
|
504 |
},
|
505 |
+
"execution_count": 1,
|
506 |
"metadata": {},
|
507 |
"output_type": "execute_result"
|
508 |
}
|
|
|
647 |
" function(atom, viewer, event, container) {{\n",
|
648 |
" if (!atom.label) {{\n",
|
649 |
" atom.label = viewer.addLabel(\n",
|
650 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
651 |
" {{\n",
|
652 |
" position: atom, \n",
|
653 |
" backgroundColor: 'mintcream', \n",
|
|
|
727 |
},
|
728 |
{
|
729 |
"cell_type": "code",
|
730 |
+
"execution_count": 4,
|
731 |
"id": "30f35243-852f-4771-9a4b-5cdd198552b5",
|
732 |
"metadata": {},
|
733 |
+
"outputs": [
|
734 |
+
{
|
735 |
+
"name": "stdout",
|
736 |
+
"output_type": "stream",
|
737 |
+
"text": [
|
738 |
+
"* Running on local URL: http://127.0.0.1:7863\n",
|
739 |
+
"\n",
|
740 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
741 |
+
]
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"data": {
|
745 |
+
"text/html": [
|
746 |
+
"<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
747 |
+
],
|
748 |
+
"text/plain": [
|
749 |
+
"<IPython.core.display.HTML object>"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
"metadata": {},
|
753 |
+
"output_type": "display_data"
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"data": {
|
757 |
+
"text/plain": []
|
758 |
+
},
|
759 |
+
"execution_count": 4,
|
760 |
+
"metadata": {},
|
761 |
+
"output_type": "execute_result"
|
762 |
+
}
|
763 |
+
],
|
764 |
+
"source": [
|
765 |
+
"import gradio as gr\n",
|
766 |
+
"import requests\n",
|
767 |
+
"from Bio.PDB import PDBParser\n",
|
768 |
+
"import numpy as np\n",
|
769 |
+
"import os\n",
|
770 |
+
"from gradio_molecule3d import Molecule3D\n",
|
771 |
+
"\n",
|
772 |
+
"def read_mol(pdb_path):\n",
|
773 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
774 |
+
" with open(pdb_path, 'r') as f:\n",
|
775 |
+
" return f.read()\n",
|
776 |
+
"\n",
|
777 |
+
"def fetch_pdb(pdb_id):\n",
|
778 |
+
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
779 |
+
" pdb_path = f'{pdb_id}.pdb'\n",
|
780 |
+
" response = requests.get(pdb_url)\n",
|
781 |
+
" if response.status_code == 200:\n",
|
782 |
+
" with open(pdb_path, 'wb') as f:\n",
|
783 |
+
" f.write(response.content)\n",
|
784 |
+
" return pdb_path\n",
|
785 |
+
" else:\n",
|
786 |
+
" return None\n",
|
787 |
+
"\n",
|
788 |
+
"def process_pdb(pdb_id, segment):\n",
|
789 |
+
" pdb_path = fetch_pdb(pdb_id)\n",
|
790 |
+
" if not pdb_path:\n",
|
791 |
+
" return \"Failed to fetch PDB file\", None, None\n",
|
792 |
+
" \n",
|
793 |
+
" parser = PDBParser(QUIET=1)\n",
|
794 |
+
" structure = parser.get_structure('protein', pdb_path)\n",
|
795 |
+
" \n",
|
796 |
+
" try:\n",
|
797 |
+
" chain = structure[0][segment]\n",
|
798 |
+
" except KeyError:\n",
|
799 |
+
" return \"Invalid Chain ID\", None, None\n",
|
800 |
+
" \n",
|
801 |
+
" # Comprehensive amino acid mapping\n",
|
802 |
+
" aa_dict = {\n",
|
803 |
+
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
804 |
+
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
805 |
+
" 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',\n",
|
806 |
+
" 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',\n",
|
807 |
+
" 'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'\n",
|
808 |
+
" }\n",
|
809 |
+
" \n",
|
810 |
+
" # Exclude non-amino acid residues and create a list of (resi, score) pairs\n",
|
811 |
+
" sequence = [\n",
|
812 |
+
" (res.id[1], res) for res in chain\n",
|
813 |
+
" if res.get_resname().strip() in aa_dict\n",
|
814 |
+
" ]\n",
|
815 |
+
"\n",
|
816 |
+
" random_scores = np.random.rand(len(sequence))\n",
|
817 |
+
" \n",
|
818 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
819 |
+
" residue_scores = [(resi, score) for (resi, _), score in zip(sequence, random_scores)]\n",
|
820 |
+
" \n",
|
821 |
+
" result_str = \"\\n\".join(\n",
|
822 |
+
" f\"{aa_dict[chain[resi].get_resname()]} {resi} {score:.2f}\"\n",
|
823 |
+
" for resi, score in residue_scores\n",
|
824 |
+
" )\n",
|
825 |
+
" \n",
|
826 |
+
" # Save the predictions to a file\n",
|
827 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
828 |
+
" with open(prediction_file, \"w\") as f:\n",
|
829 |
+
" f.write(result_str)\n",
|
830 |
+
" \n",
|
831 |
+
" return result_str, molecule(pdb_path, residue_scores, segment), prediction_file\n",
|
832 |
+
"\n",
|
833 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
834 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
835 |
+
" \n",
|
836 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
837 |
+
" high_score_script = \"\"\n",
|
838 |
+
" if residue_scores is not None:\n",
|
839 |
+
" # Sort residues based on their scores\n",
|
840 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.9]\n",
|
841 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]\n",
|
842 |
+
" \n",
|
843 |
+
" high_score_script = \"\"\"\n",
|
844 |
+
" // Reset all styles first\n",
|
845 |
+
" viewer.getModel(0).setStyle({}, {});\n",
|
846 |
+
" \n",
|
847 |
+
" // Show only the selected chain\n",
|
848 |
+
" viewer.getModel(0).setStyle(\n",
|
849 |
+
" {\"chain\": \"%s\"}, \n",
|
850 |
+
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
851 |
+
" );\n",
|
852 |
+
" \n",
|
853 |
+
" // Highlight high-scoring residues only for the selected chain\n",
|
854 |
+
" let highScoreResidues = [%s];\n",
|
855 |
+
" viewer.getModel(0).setStyle(\n",
|
856 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
857 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
858 |
+
" );\n",
|
859 |
+
"\n",
|
860 |
+
" // Highlight medium-scoring residues only for the selected chain\n",
|
861 |
+
" let midScoreResidues = [%s];\n",
|
862 |
+
" viewer.getModel(0).setStyle(\n",
|
863 |
+
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
864 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
865 |
+
" );\n",
|
866 |
+
" \"\"\" % (segment, \n",
|
867 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
868 |
+
" segment,\n",
|
869 |
+
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
870 |
+
" segment)\n",
|
871 |
+
" \n",
|
872 |
+
" html_content = f\"\"\"\n",
|
873 |
+
" <!DOCTYPE html>\n",
|
874 |
+
" <html>\n",
|
875 |
+
" <head> \n",
|
876 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
877 |
+
" <style>\n",
|
878 |
+
" .mol-container {{\n",
|
879 |
+
" width: 100%;\n",
|
880 |
+
" height: 700px;\n",
|
881 |
+
" position: relative;\n",
|
882 |
+
" }}\n",
|
883 |
+
" </style>\n",
|
884 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
885 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
886 |
+
" </head>\n",
|
887 |
+
" <body>\n",
|
888 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
889 |
+
" <script>\n",
|
890 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
891 |
+
" $(document).ready(function () {{\n",
|
892 |
+
" let element = $(\"#container\");\n",
|
893 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
894 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
895 |
+
" viewer.addModel(pdb, \"pdb\");\n",
|
896 |
+
" \n",
|
897 |
+
" // Reset all styles and show only selected chain\n",
|
898 |
+
" viewer.getModel(0).setStyle(\n",
|
899 |
+
" {{\"chain\": \"{segment}\"}}, \n",
|
900 |
+
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
901 |
+
" );\n",
|
902 |
+
" \n",
|
903 |
+
" {high_score_script}\n",
|
904 |
+
" \n",
|
905 |
+
" // Add hover functionality\n",
|
906 |
+
" viewer.setHoverable(\n",
|
907 |
+
" {{}}, \n",
|
908 |
+
" true, \n",
|
909 |
+
" function(atom, viewer, event, container) {{\n",
|
910 |
+
" if (!atom.label) {{\n",
|
911 |
+
" atom.label = viewer.addLabel(\n",
|
912 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
913 |
+
" {{\n",
|
914 |
+
" position: atom, \n",
|
915 |
+
" backgroundColor: 'mintcream', \n",
|
916 |
+
" fontColor: 'black',\n",
|
917 |
+
" fontSize: 12,\n",
|
918 |
+
" padding: 2\n",
|
919 |
+
" }}\n",
|
920 |
+
" );\n",
|
921 |
+
" }}\n",
|
922 |
+
" }},\n",
|
923 |
+
" function(atom, viewer) {{\n",
|
924 |
+
" if (atom.label) {{\n",
|
925 |
+
" viewer.removeLabel(atom.label);\n",
|
926 |
+
" delete atom.label;\n",
|
927 |
+
" }}\n",
|
928 |
+
" }}\n",
|
929 |
+
" );\n",
|
930 |
+
" \n",
|
931 |
+
" viewer.zoomTo();\n",
|
932 |
+
" viewer.render();\n",
|
933 |
+
" viewer.zoom(0.8, 2000);\n",
|
934 |
+
" }});\n",
|
935 |
+
" </script>\n",
|
936 |
+
" </body>\n",
|
937 |
+
" </html>\n",
|
938 |
+
" \"\"\"\n",
|
939 |
+
" \n",
|
940 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
941 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
942 |
+
"\n",
|
943 |
+
"reps = [\n",
|
944 |
+
" {\n",
|
945 |
+
" \"model\": 0,\n",
|
946 |
+
" \"style\": \"cartoon\",\n",
|
947 |
+
" \"color\": \"whiteCarbon\",\n",
|
948 |
+
" \"residue_range\": \"\",\n",
|
949 |
+
" \"around\": 0,\n",
|
950 |
+
" \"byres\": False,\n",
|
951 |
+
" }\n",
|
952 |
+
" ]\n",
|
953 |
+
"\n",
|
954 |
+
"# Gradio UI\n",
|
955 |
+
"with gr.Blocks() as demo:\n",
|
956 |
+
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
957 |
+
" with gr.Row():\n",
|
958 |
+
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
959 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
960 |
+
"\n",
|
961 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
962 |
+
"\n",
|
963 |
+
" with gr.Row():\n",
|
964 |
+
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
965 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
966 |
+
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
967 |
+
"\n",
|
968 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
969 |
+
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
970 |
+
" download_output = gr.File(label=\"Download Predictions\")\n",
|
971 |
+
" \n",
|
972 |
+
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
973 |
+
" \n",
|
974 |
+
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
975 |
+
" \n",
|
976 |
+
" gr.Markdown(\"## Examples\")\n",
|
977 |
+
" gr.Examples(\n",
|
978 |
+
" examples=[\n",
|
979 |
+
" [\"2IWI\", \"A\"],\n",
|
980 |
+
" [\"7RPZ\", \"B\"],\n",
|
981 |
+
" [\"3TJN\", \"C\"]\n",
|
982 |
+
" ],\n",
|
983 |
+
" inputs=[pdb_input, segment_input],\n",
|
984 |
+
" outputs=[predictions_output, molecule_output, download_output]\n",
|
985 |
+
" )\n",
|
986 |
+
"\n",
|
987 |
+
"demo.launch()"
|
988 |
+
]
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"cell_type": "code",
|
992 |
+
"execution_count": null,
|
993 |
+
"id": "6f17feec-0347-4f9d-acd4-ae681c3ed425",
|
994 |
+
"metadata": {},
|
995 |
+
"outputs": [],
|
996 |
+
"source": []
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"cell_type": "code",
|
1000 |
+
"execution_count": null,
|
1001 |
+
"id": "63201f38-adde-4b12-a8d3-f23474d045cf",
|
1002 |
+
"metadata": {},
|
1003 |
"outputs": [],
|
1004 |
"source": []
|
1005 |
},
|
1006 |
{
|
1007 |
"cell_type": "code",
|
1008 |
"execution_count": null,
|
1009 |
+
"id": "5ccbf398-5ef2-4955-98db-99f904f8daa4",
|
1010 |
+
"metadata": {},
|
1011 |
+
"outputs": [],
|
1012 |
+
"source": []
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"cell_type": "code",
|
1016 |
+
"execution_count": null,
|
1017 |
+
"id": "4c61bac4-4f2e-4f4a-aa1f-30dca209747c",
|
1018 |
"metadata": {},
|
1019 |
"outputs": [],
|
1020 |
"source": [
|
|
|
1087 |
" except KeyError:\n",
|
1088 |
" return \"Invalid Chain ID\", None, None\n",
|
1089 |
" \n",
|
1090 |
+
" \n",
|
1091 |
" aa_dict = {\n",
|
1092 |
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
1093 |
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
|
|
1097 |
" }\n",
|
1098 |
" \n",
|
1099 |
" # Exclude non-amino acid residues\n",
|
1100 |
+
" sequence = \"\".join(\n",
|
1101 |
+
" aa_dict[residue.get_resname().strip()] \n",
|
1102 |
+
" for residue in chain \n",
|
1103 |
" if residue.get_resname().strip() in aa_dict\n",
|
1104 |
+
" )\n",
|
1105 |
+
" sequence2 = [\n",
|
1106 |
+
" (res.id[1], res) for res in chain\n",
|
1107 |
+
" if res.get_resname().strip() in aa_dict\n",
|
1108 |
" ]\n",
|
1109 |
" \n",
|
1110 |
" # Prepare input for model prediction\n",
|
|
|
1116 |
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
1117 |
" normalized_scores = normalize_scores(scores)\n",
|
1118 |
"\n",
|
1119 |
+
" # Zip residues with scores to track the residue ID and score\n",
|
1120 |
+
" residue_scores = [(resi, score) for (resi, _), score in zip(sequence2, normalized_scores)]\n",
|
1121 |
+
" \n",
|
1122 |
+
" result_str = \"\\n\".join([\n",
|
1123 |
+
" f\"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1124 |
+
" for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict\n",
|
1125 |
+
" ])\n",
|
1126 |
" \n",
|
1127 |
" # Save the predictions to a file\n",
|
1128 |
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
1129 |
" with open(prediction_file, \"w\") as f:\n",
|
1130 |
" f.write(result_str)\n",
|
1131 |
" \n",
|
1132 |
+
" return result_str, molecule(pdb_path, residue_scores, segment), prediction_file\n",
|
1133 |
"\n",
|
1134 |
+
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
1135 |
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
1136 |
" \n",
|
1137 |
" # Prepare high-scoring residues script if scores are provided\n",
|
1138 |
" high_score_script = \"\"\n",
|
1139 |
+
" if residue_scores is not None:\n",
|
1140 |
+
" # Sort residues based on their scores\n",
|
1141 |
+
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
1142 |
+
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
1143 |
+
" \n",
|
1144 |
" high_score_script = \"\"\"\n",
|
1145 |
" // Reset all styles first\n",
|
1146 |
" viewer.getModel(0).setStyle({}, {});\n",
|
|
|
1158 |
" {\"stick\": {\"color\": \"red\"}}\n",
|
1159 |
" );\n",
|
1160 |
"\n",
|
1161 |
+
" // Highlight medium-scoring residues only for the selected chain\n",
|
1162 |
+
" let midScoreResidues = [%s];\n",
|
1163 |
" viewer.getModel(0).setStyle(\n",
|
1164 |
+
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
1165 |
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1166 |
" );\n",
|
1167 |
" \"\"\" % (segment, \n",
|
1168 |
+
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
1169 |
" segment,\n",
|
1170 |
+
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
1171 |
" segment)\n",
|
1172 |
" \n",
|
1173 |
" html_content = f\"\"\"\n",
|
|
|
1210 |
" function(atom, viewer, event, container) {{\n",
|
1211 |
" if (!atom.label) {{\n",
|
1212 |
" atom.label = viewer.addLabel(\n",
|
1213 |
+
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
1214 |
" {{\n",
|
1215 |
" position: atom, \n",
|
1216 |
" backgroundColor: 'mintcream', \n",
|
|
|
1277 |
" gr.Markdown(\"## Examples\")\n",
|
1278 |
" gr.Examples(\n",
|
1279 |
" examples=[\n",
|
1280 |
+
" [\"7RPZ\", \"A\"],\n",
|
1281 |
+
" [\"2IWI\", \"B\"],\n",
|
1282 |
" [\"3TJN\", \"C\"]\n",
|
1283 |
" ],\n",
|
1284 |
" inputs=[pdb_input, segment_input],\n",
|
1285 |
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1286 |
" )\n",
|
1287 |
"\n",
|
1288 |
+
"demo.launch(share=True)"
|
1289 |
]
|
1290 |
},
|
1291 |
{
|
1292 |
"cell_type": "code",
|
1293 |
"execution_count": null,
|
1294 |
+
"id": "b61d06ec-a4ee-4f65-925f-d2688730416a",
|
1295 |
"metadata": {},
|
1296 |
"outputs": [],
|
1297 |
"source": []
|
|
|
1299 |
{
|
1300 |
"cell_type": "code",
|
1301 |
"execution_count": null,
|
1302 |
+
"id": "4d67d69f-1f53-4bcc-8905-8d29384c4e20",
|
1303 |
"metadata": {},
|
1304 |
"outputs": [],
|
1305 |
"source": [
|
1306 |
"import gradio as gr\n",
|
1307 |
+
"import requests\n",
|
1308 |
+
"from Bio.PDB import PDBParser\n",
|
1309 |
+
"import numpy as np\n",
|
1310 |
+
"import os\n",
|
1311 |
+
"from gradio_molecule3d import Molecule3D\n",
|
1312 |
+
"\n",
|
1313 |
+
"\n",
|
1314 |
"from model_loader import load_model\n",
|
1315 |
"\n",
|
1316 |
"import torch\n",
|
|
|
1319 |
"from torch.utils.data import DataLoader\n",
|
1320 |
"\n",
|
1321 |
"import re\n",
|
|
|
|
|
1322 |
"import pandas as pd\n",
|
1323 |
"import copy\n",
|
1324 |
"\n",
|
|
|
1330 |
"\n",
|
1331 |
"from scipy.special import expit\n",
|
1332 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1333 |
"# Load model and move to device\n",
|
1334 |
"checkpoint = 'ThorbenF/prot_t5_xl_uniref50'\n",
|
1335 |
"max_length = 1500\n",
|
|
|
1338 |
"model.to(device)\n",
|
1339 |
"model.eval()\n",
|
1340 |
"\n",
|
1341 |
+
"def normalize_scores(scores):\n",
|
1342 |
+
" min_score = np.min(scores)\n",
|
1343 |
+
" max_score = np.max(scores)\n",
|
1344 |
+
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
1345 |
+
" \n",
|
1346 |
+
"def read_mol(pdb_path):\n",
|
1347 |
+
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
1348 |
+
" with open(pdb_path, 'r') as f:\n",
|
1349 |
+
" return f.read()\n",
|
1350 |
+
"\n",
|
1351 |
"def fetch_pdb(pdb_id):\n",
|
1352 |
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
1353 |
+
" pdb_path = f'{pdb_id}.pdb'\n",
|
|
|
1354 |
" response = requests.get(pdb_url)\n",
|
1355 |
" if response.status_code == 200:\n",
|
1356 |
" with open(pdb_path, 'wb') as f:\n",
|
1357 |
" f.write(response.content)\n",
|
1358 |
" return pdb_path\n",
|
1359 |
+
" else:\n",
|
1360 |
+
" return None\n",
|
|
|
|
|
|
|
|
|
|
|
1361 |
"\n",
|
1362 |
"def process_pdb(pdb_id, segment):\n",
|
1363 |
" pdb_path = fetch_pdb(pdb_id)\n",
|
|
|
1366 |
" \n",
|
1367 |
" parser = PDBParser(QUIET=1)\n",
|
1368 |
" structure = parser.get_structure('protein', pdb_path)\n",
|
|
|
1369 |
" \n",
|
1370 |
+
" try:\n",
|
1371 |
+
" chain = structure[0][segment]\n",
|
1372 |
+
" except KeyError:\n",
|
1373 |
+
" return \"Invalid Chain ID\", None, None\n",
|
1374 |
+
" \n",
|
1375 |
+
" \n",
|
1376 |
" aa_dict = {\n",
|
1377 |
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
1378 |
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
|
|
1396 |
" # Calculate scores and normalize them\n",
|
1397 |
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
1398 |
" normalized_scores = normalize_scores(scores)\n",
|
1399 |
+
"\n",
|
|
|
1400 |
" result_str = \"\\n\".join([\n",
|
1401 |
" f\"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1402 |
" for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict\n",
|
1403 |
" ])\n",
|
1404 |
" \n",
|
1405 |
+
" # Save the predictions to a file\n",
|
1406 |
+
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
1407 |
+
" with open(prediction_file, \"w\") as f:\n",
|
1408 |
" f.write(result_str)\n",
|
1409 |
" \n",
|
1410 |
+
" return result_str, molecule(pdb_path, normalized_scores, segment), prediction_file\n",
|
1411 |
"\n",
|
1412 |
+
"def molecule(input_pdb, scores=None, segment='A'):\n",
|
1413 |
+
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
1414 |
+
" \n",
|
1415 |
+
" # Prepare high-scoring residues script if scores are provided\n",
|
1416 |
+
" high_score_script = \"\"\n",
|
1417 |
+
" if scores is not None:\n",
|
1418 |
+
" high_score_script = \"\"\"\n",
|
1419 |
+
" // Reset all styles first\n",
|
1420 |
+
" viewer.getModel(0).setStyle({}, {});\n",
|
1421 |
+
" \n",
|
1422 |
+
" // Show only the selected chain\n",
|
1423 |
+
" viewer.getModel(0).setStyle(\n",
|
1424 |
+
" {\"chain\": \"%s\"}, \n",
|
1425 |
+
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
1426 |
+
" );\n",
|
1427 |
+
" \n",
|
1428 |
+
" // Highlight high-scoring residues only for the selected chain\n",
|
1429 |
+
" let highScoreResidues = [%s];\n",
|
1430 |
+
" viewer.getModel(0).setStyle(\n",
|
1431 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
1432 |
+
" {\"stick\": {\"color\": \"red\"}}\n",
|
1433 |
+
" );\n",
|
1434 |
+
"\n",
|
1435 |
+
" // Highlight high-scoring residues only for the selected chain\n",
|
1436 |
+
" let highScoreResidues2 = [%s];\n",
|
1437 |
+
" viewer.getModel(0).setStyle(\n",
|
1438 |
+
" {\"chain\": \"%s\", \"resi\": highScoreResidues2}, \n",
|
1439 |
+
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1440 |
+
" );\n",
|
1441 |
+
" \"\"\" % (segment, \n",
|
1442 |
+
" \", \".join(str(i+1) for i, score in enumerate(scores) if score > 0.8),\n",
|
1443 |
+
" segment,\n",
|
1444 |
+
" \", \".join(str(i+1) for i, score in enumerate(scores) if (score > 0.5) and (score < 0.8)),\n",
|
1445 |
+
" segment)\n",
|
1446 |
+
" \n",
|
1447 |
+
" html_content = f\"\"\"\n",
|
1448 |
+
" <!DOCTYPE html>\n",
|
1449 |
+
" <html>\n",
|
1450 |
+
" <head> \n",
|
1451 |
+
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
1452 |
+
" <style>\n",
|
1453 |
+
" .mol-container {{\n",
|
1454 |
+
" width: 100%;\n",
|
1455 |
+
" height: 700px;\n",
|
1456 |
+
" position: relative;\n",
|
1457 |
+
" }}\n",
|
1458 |
+
" </style>\n",
|
1459 |
+
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
1460 |
+
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
1461 |
+
" </head>\n",
|
1462 |
+
" <body>\n",
|
1463 |
+
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
1464 |
+
" <script>\n",
|
1465 |
+
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
1466 |
+
" $(document).ready(function () {{\n",
|
1467 |
+
" let element = $(\"#container\");\n",
|
1468 |
+
" let config = {{ backgroundColor: \"white\" }};\n",
|
1469 |
+
" let viewer = $3Dmol.createViewer(element, config);\n",
|
1470 |
+
" viewer.addModel(pdb, \"pdb\");\n",
|
1471 |
+
" \n",
|
1472 |
+
" // Reset all styles and show only selected chain\n",
|
1473 |
+
" viewer.getModel(0).setStyle(\n",
|
1474 |
+
" {{\"chain\": \"{segment}\"}}, \n",
|
1475 |
+
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
1476 |
+
" );\n",
|
1477 |
+
" \n",
|
1478 |
+
" {high_score_script}\n",
|
1479 |
+
" \n",
|
1480 |
+
" // Add hover functionality\n",
|
1481 |
+
" viewer.setHoverable(\n",
|
1482 |
+
" {{}}, \n",
|
1483 |
+
" true, \n",
|
1484 |
+
" function(atom, viewer, event, container) {{\n",
|
1485 |
+
" if (!atom.label) {{\n",
|
1486 |
+
" atom.label = viewer.addLabel(\n",
|
1487 |
+
" atom.resn + \":\" + atom.atom, \n",
|
1488 |
+
" {{\n",
|
1489 |
+
" position: atom, \n",
|
1490 |
+
" backgroundColor: 'mintcream', \n",
|
1491 |
+
" fontColor: 'black',\n",
|
1492 |
+
" fontSize: 12,\n",
|
1493 |
+
" padding: 2\n",
|
1494 |
+
" }}\n",
|
1495 |
+
" );\n",
|
1496 |
+
" }}\n",
|
1497 |
+
" }},\n",
|
1498 |
+
" function(atom, viewer) {{\n",
|
1499 |
+
" if (atom.label) {{\n",
|
1500 |
+
" viewer.removeLabel(atom.label);\n",
|
1501 |
+
" delete atom.label;\n",
|
1502 |
+
" }}\n",
|
1503 |
+
" }}\n",
|
1504 |
+
" );\n",
|
1505 |
+
" \n",
|
1506 |
+
" viewer.zoomTo();\n",
|
1507 |
+
" viewer.render();\n",
|
1508 |
+
" viewer.zoom(0.8, 2000);\n",
|
1509 |
+
" }});\n",
|
1510 |
+
" </script>\n",
|
1511 |
+
" </body>\n",
|
1512 |
+
" </html>\n",
|
1513 |
+
" \"\"\"\n",
|
1514 |
+
" \n",
|
1515 |
+
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
1516 |
+
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
1517 |
+
"\n",
|
1518 |
+
"reps = [\n",
|
1519 |
+
" {\n",
|
1520 |
+
" \"model\": 0,\n",
|
1521 |
+
" \"style\": \"cartoon\",\n",
|
1522 |
+
" \"color\": \"whiteCarbon\",\n",
|
1523 |
+
" \"residue_range\": \"\",\n",
|
1524 |
+
" \"around\": 0,\n",
|
1525 |
+
" \"byres\": False,\n",
|
1526 |
+
" }\n",
|
1527 |
+
" ]\n",
|
1528 |
"\n",
|
1529 |
"# Gradio UI\n",
|
1530 |
"with gr.Blocks() as demo:\n",
|
1531 |
+
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
1532 |
+
" with gr.Row():\n",
|
1533 |
+
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1534 |
+
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
1535 |
+
"\n",
|
1536 |
+
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
1537 |
"\n",
|
1538 |
" with gr.Row():\n",
|
1539 |
+
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1540 |
+
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
1541 |
+
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
1542 |
+
"\n",
|
1543 |
+
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
|
|
|
|
|
|
|
|
|
|
1544 |
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1545 |
" download_output = gr.File(label=\"Download Predictions\")\n",
|
1546 |
+
" \n",
|
1547 |
+
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
1548 |
+
" \n",
|
1549 |
+
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
1550 |
+
" \n",
|
|
|
|
|
|
|
1551 |
" gr.Markdown(\"## Examples\")\n",
|
1552 |
" gr.Examples(\n",
|
1553 |
" examples=[\n",
|
1554 |
+
" [\"2IWI\", \"A\"],\n",
|
1555 |
+
" [\"7RPZ\", \"B\"],\n",
|
1556 |
+
" [\"3TJN\", \"C\"]\n",
|
1557 |
" ],\n",
|
1558 |
+
" inputs=[pdb_input, segment_input],\n",
|
1559 |
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1560 |
" )\n",
|
1561 |
"\n",
|
1562 |
"demo.launch(share=True)"
|
1563 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1564 |
}
|
1565 |
],
|
1566 |
"metadata": {
|