from datetime import datetime import gradio as gr import requests from Bio.PDB import PDBParser, MMCIFParser, PDBIO from Bio.PDB.Polypeptide import is_aa from Bio.SeqUtils import seq1 from typing import Optional, Tuple import numpy as np import os from gradio_molecule3d import Molecule3D from model_loader import load_model import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader import re import pandas as pd import copy import transformers, datasets from transformers import AutoTokenizer from transformers import DataCollatorForTokenClassification from datasets import Dataset from scipy.special import expit from datetime import datetime import gradio as gr import requests from Bio.PDB import PDBParser, MMCIFParser, PDBIO from Bio.PDB.Polypeptide import is_aa from Bio.SeqUtils import seq1 from typing import Optional, Tuple import numpy as np import os from gradio_molecule3d import Molecule3D import re import pandas as pd import copy from scipy.special import expit # Load model and move to device checkpoint = 'ThorbenF/prot_t5_xl_uniref50' max_length = 1500 model, tokenizer = load_model(checkpoint, max_length) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) model.eval() from datetime import datetime import gradio as gr import requests from Bio.PDB import PDBParser, MMCIFParser, PDBIO from Bio.PDB.Polypeptide import is_aa from Bio.SeqUtils import seq1 from Bio.PDB import Select from typing import Optional, Tuple import numpy as np import os from gradio_molecule3d import Molecule3D import re import pandas as pd import copy from scipy.special import expit def normalize_scores(scores): min_score = np.min(scores) max_score = np.max(scores) return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores def read_mol(pdb_path): """Read PDB file and return its content as a string""" with open(pdb_path, 'r') as f: return f.read() def fetch_structure(pdb_id: str, output_dir: str = ".") -> Optional[str]: """ Fetch the structure file for a given PDB ID. Prioritizes CIF files. If a structure file already exists locally, it uses that. """ file_path = download_structure(pdb_id, output_dir) if file_path: return file_path else: return None def download_structure(pdb_id: str, output_dir: str) -> Optional[str]: """ Attempt to download the structure file in CIF or PDB format. Returns the path to the downloaded file, or None if download fails. """ for ext in ['.cif', '.pdb']: file_path = os.path.join(output_dir, f"{pdb_id}{ext}") if os.path.exists(file_path): return file_path url = f"https://files.rcsb.org/download/{pdb_id}{ext}" try: response = requests.get(url, timeout=10) if response.status_code == 200: with open(file_path, 'wb') as f: f.write(response.content) return file_path except Exception as e: print(f"Download error for {pdb_id}{ext}: {e}") return None def convert_cif_to_pdb(cif_path: str, output_dir: str = ".") -> str: """ Convert a CIF file to PDB format using BioPython and return the PDB file path. """ pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb')) parser = MMCIFParser(QUIET=True) structure = parser.get_structure('protein', cif_path) io = PDBIO() io.set_structure(structure) io.save(pdb_path) return pdb_path def fetch_pdb(pdb_id): pdb_path = fetch_structure(pdb_id) if not pdb_path: return None _, ext = os.path.splitext(pdb_path) if ext == '.cif': pdb_path = convert_cif_to_pdb(pdb_path) return pdb_path def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str: """ Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores """ # Read the original PDB file parser = PDBParser(QUIET=True) structure = parser.get_structure('protein', input_pdb) # Prepare a new structure with only the specified chain and selected residues output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb" # Create scores dictionary for easy lookup scores_dict = {resi: score for resi, score in residue_scores} # Create a custom Select class class ResidueSelector(Select): def __init__(self, chain_id, selected_residues, scores_dict): self.chain_id = chain_id self.selected_residues = selected_residues self.scores_dict = scores_dict def accept_chain(self, chain): return chain.id == self.chain_id def accept_residue(self, residue): return residue.id[1] in self.selected_residues def accept_atom(self, atom): if atom.parent.id[1] in self.scores_dict: atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100 return True # Prepare output PDB with selected chain and residues, modified B-factors io = PDBIO() selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict) io.set_structure(structure[0]) io.save(output_pdb, selector) return output_pdb def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str): """ Calculate the geometric center of high-scoring residues """ parser = PDBParser(QUIET=True) structure = parser.get_structure('protein', pdb_path) # Collect coordinates of CA atoms from high-scoring residues coords = [] for model in structure: for chain in model: if chain.id == chain_id: for residue in chain: if residue.id[1] in high_score_residues: if 'CA' in residue: # Use alpha carbon as representative ca_atom = residue['CA'] coords.append(ca_atom.coord) # Calculate geometric center if coords: center = np.mean(coords, axis=0) return center return None def process_pdb(pdb_id_or_file, segment): # Determine if input is a PDB ID or file path if pdb_id_or_file.endswith('.pdb'): pdb_path = pdb_id_or_file pdb_id = os.path.splitext(os.path.basename(pdb_path))[0] else: pdb_id = pdb_id_or_file pdb_path = fetch_pdb(pdb_id) if not pdb_path: return "Failed to fetch PDB file", None, None # Determine the file format and choose the appropriate parser _, ext = os.path.splitext(pdb_path) parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True) try: # Parse the structure file structure = parser.get_structure('protein', pdb_path) except Exception as e: return f"Error parsing structure file: {e}", None, None # Extract the specified chain try: chain = structure[0][segment] except KeyError: return "Invalid Chain ID", None, None protein_residues = [res for res in chain if is_aa(res)] sequence = "".join(seq1(res.resname) for res in protein_residues) sequence_id = [res.id[1] for res in protein_residues] scores = np.random.rand(len(sequence)) normalized_scores = normalize_scores(scores) # Zip residues with scores to track the residue ID and score residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)] # Identify high scoring residues (> 0.5) high_score_residues = [resi for resi, score in residue_scores if score > 0.5] # Preparing the result: only print high scoring residues current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n" result_str += "High-scoring Residues (Score > 0.5):\n" result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n\n" result_str += "\n".join([ f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}" for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues ]) # Create chain-specific PDB with scores in B-factor scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues) # Molecule visualization with updated script with color mapping mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map) # Improved PyMOL command suggestions current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") pymol_commands = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n" pymol_commands += f""" # PyMOL Visualization Commands load {os.path.abspath(pdb_path)}, protein hide everything, all show cartoon, chain {segment} color white, chain {segment} """ # Color specific residues for score_range, color in [ (high_score_residues, "red") ]: if score_range: resi_list = '+'.join(map(str, score_range)) pymol_commands += f""" select high_score_residues, resi {resi_list} and chain {segment} show sticks, high_score_residues color {color}, high_score_residues """ # Create prediction and scored PDB files prediction_file = f"{pdb_id}_binding_site_residues.txt" with open(prediction_file, "w") as f: f.write(result_str) return pymol_commands, mol_vis, [prediction_file,scored_pdb] def molecule(input_pdb, residue_scores=None, segment='A'): # More granular scoring for visualization mol = read_mol(input_pdb) # Read PDB file content # Prepare high-scoring residues script if scores are provided high_score_script = "" if residue_scores is not None: # Filter residues based on their scores class1_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.6] class2_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.7] class3_score_residues = [resi for resi, score in residue_scores if 0.7 < score <= 0.8] class4_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9] class5_score_residues = [resi for resi, score in residue_scores if 0.9 < score <= 1.0] high_score_script = """ // Load the original model and apply white cartoon style let chainModel = viewer.addModel(pdb, "pdb"); chainModel.setStyle({}, {}); chainModel.setStyle( {"chain": "%s"}, {"cartoon": {"color": "white"}} ); // Create a new model for high-scoring residues and apply red sticks style let class1Model = viewer.addModel(pdb, "pdb"); class1Model.setStyle({}, {}); class1Model.setStyle( {"chain": "%s", "resi": [%s]}, {"stick": {"color": "blue"}} ); // Create a new model for high-scoring residues and apply red sticks style let class2Model = viewer.addModel(pdb, "pdb"); class2Model.setStyle({}, {}); class2Model.setStyle( {"chain": "%s", "resi": [%s]}, {"stick": {"color": "lightblue"}} ); // Create a new model for high-scoring residues and apply red sticks style let class3Model = viewer.addModel(pdb, "pdb"); class3Model.setStyle({}, {}); class3Model.setStyle( {"chain": "%s", "resi": [%s]}, {"stick": {"color": "white"}} ); // Create a new model for high-scoring residues and apply red sticks style let class4Model = viewer.addModel(pdb, "pdb"); class4Model.setStyle({}, {}); class4Model.setStyle( {"chain": "%s", "resi": [%s]}, {"stick": {"color": "orange"}} ); // Create a new model for high-scoring residues and apply red sticks style let class5Model = viewer.addModel(pdb, "pdb"); class5Model.setStyle({}, {}); class5Model.setStyle( {"chain": "%s", "resi": [%s]}, {"stick": {"color": "red"}} ); """ % ( segment, segment, ", ".join(str(resi) for resi in class1_score_residues), segment, ", ".join(str(resi) for resi in class2_score_residues), segment, ", ".join(str(resi) for resi in class3_score_residues), segment, ", ".join(str(resi) for resi in class4_score_residues), segment, ", ".join(str(resi) for resi in class5_score_residues) ) # Generate the full HTML content html_content = f"""
""" # Return the HTML content within an iframe safely encoded for special characters return f'' # Gradio UI with gr.Blocks() as demo: gr.Markdown("# Protein Binding Site Prediction") # Mode selection mode = gr.Radio( choices=["PDB ID", "Upload File"], value="PDB ID", label="Input Mode", info="Choose whether to input a PDB ID or upload a PDB/CIF file." ) # Input components based on mode pdb_input = gr.Textbox(value="4BDU", label="PDB ID", placeholder="Enter PDB ID here...") pdb_file = gr.File(label="Upload PDB/CIF File", visible=False) visualize_btn = gr.Button("Visualize Structure") molecule_output2 = Molecule3D(label="Protein Structure", reps=[ { "model": 0, "style": "cartoon", "color": "whiteCarbon", "residue_range": "", "around": 0, "byres": False, } ]) with gr.Row(): segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...") prediction_btn = gr.Button("Predict Binding Site") molecule_output = gr.HTML(label="Protein Structure") explanation_vis = gr.Markdown(""" Residues with a score > 0.5 are considered binding sites and represented as sticks with the score dependent colorcoding: - 0.5-0.6: blue - 0.6–0.7: light blue - 0.7–0.8: white - 0.8–0.9: orange - 0.9–1.0: red """) predictions_output = gr.Textbox(label="Visualize Prediction with PyMol") gr.Markdown("### Download:\n- List of predicted binding site residues\n- PDB with score in beta factor column") download_output = gr.File(label="Download Files", file_count="multiple") def process_interface(mode, pdb_id, pdb_file, chain_id): if mode == "PDB ID": return process_pdb(pdb_id, chain_id) elif mode == "Upload File": _, ext = os.path.splitext(pdb_file.name) file_path = os.path.join('./', f"{_}{ext}") if ext == '.cif': pdb_path = convert_cif_to_pdb(file_path) else: pdb_path= file_path return process_pdb(pdb_path, chain_id) else: return "Error: Invalid mode selected", None, None def fetch_interface(mode, pdb_id, pdb_file): if mode == "PDB ID": return fetch_pdb(pdb_id) elif mode == "Upload File": _, ext = os.path.splitext(pdb_file.name) file_path = os.path.join('./', f"{_}{ext}") #print(ext) if ext == '.cif': pdb_path = convert_cif_to_pdb(file_path) else: pdb_path= file_path #print(pdb_path) return pdb_path else: return "Error: Invalid mode selected" def toggle_mode(selected_mode): if selected_mode == "PDB ID": return gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=True) mode.change( toggle_mode, inputs=[mode], outputs=[pdb_input, pdb_file] ) prediction_btn.click( process_interface, inputs=[mode, pdb_input, pdb_file, segment_input], outputs=[predictions_output, molecule_output, download_output] ) visualize_btn.click( fetch_interface, inputs=[mode, pdb_input, pdb_file], outputs=molecule_output2 ) gr.Markdown("## Examples") gr.Examples( examples=[ ["7RPZ", "A"], ["2IWI", "B"], ["2F6V", "A"] ], inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output] ) demo.launch(share=True)