import gradio as gr from model_loader import load_model import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader import re import numpy as np import os import pandas as pd import copy import transformers, datasets from transformers import AutoTokenizer from transformers import DataCollatorForTokenClassification from datasets import Dataset from scipy.special import expit import requests # Biopython imports from Bio.PDB import PDBParser, Select from Bio.PDB.DSSP import DSSP from gradio_molecule3d import Molecule3D # Configuration checkpoint = 'ThorbenF/prot_t5_xl_uniref50' max_length = 1500 # Load model and move to device model, tokenizer = load_model(checkpoint, max_length) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) model.eval() def create_dataset(tokenizer, seqs, labels, checkpoint): tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True) dataset = Dataset.from_dict(tokenized) # Adjust labels based on checkpoint if ("esm" in checkpoint) or ("ProstT5" in checkpoint): labels = [l[:max_length-2] for l in labels] else: labels = [l[:max_length-1] for l in labels] dataset = dataset.add_column("labels", labels) return dataset def convert_predictions(input_logits): all_probs = [] for logits in input_logits: logits = logits.reshape(-1, 2) probabilities_class1 = expit(logits[:, 1] - logits[:, 0]) all_probs.append(probabilities_class1) return np.concatenate(all_probs) def normalize_scores(scores): min_score = np.min(scores) max_score = np.max(scores) return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores def predict_protein_sequence(test_one_letter_sequence): # Sanitize input sequence test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \ .replace("B", "X").replace("U", "X") \ .replace("Z", "X").replace("J", "X") # Prepare sequence for different model types if ("prot_t5" in checkpoint) or ("ProstT5" in checkpoint): test_one_letter_sequence = " ".join(test_one_letter_sequence) if "ProstT5" in checkpoint: test_one_letter_sequence = " " + test_one_letter_sequence # Create dummy labels dummy_labels = [np.zeros(len(test_one_letter_sequence))] # Create dataset test_dataset = create_dataset(tokenizer, [test_one_letter_sequence], dummy_labels, checkpoint) # Select appropriate data collator data_collator = (DataCollatorForTokenClassification(tokenizer) if "esm" not in checkpoint and "ProstT5" not in checkpoint else DataCollatorForTokenClassification(tokenizer)) # Create data loader test_loader = DataLoader(test_dataset, batch_size=1, collate_fn=data_collator) # Predict for batch in test_loader: input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) with torch.no_grad(): outputs = model(input_ids, attention_mask=attention_mask) logits = outputs.logits.detach().cpu().numpy() # Process logits logits = logits[:, :-1] # Remove last element for prot_t5 logits = convert_predictions(logits) # Normalize and format results normalized_scores = normalize_scores(logits) test_one_letter_sequence = test_one_letter_sequence.replace(" ", "") return test_one_letter_sequence, normalized_scores def fetch_pdb(pdb_id): try: # Create a directory to store PDB files if it doesn't exist os.makedirs('pdb_files', exist_ok=True) # Fetch the PDB structure from RCSB pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb' pdb_path = f'pdb_files/{pdb_id}.pdb' # Download the file response = requests.get(pdb_url) if response.status_code == 200: with open(pdb_path, 'wb') as f: f.write(response.content) return pdb_path else: return None except Exception as e: print(f"Error fetching PDB: {e}") return None def extract_protein_sequence(pdb_path): """ Extract the longest protein sequence from a PDB file """ parser = PDBParser(QUIET=1) structure = parser.get_structure('protein', pdb_path) class ProteinSelect(Select): def accept_residue(self, residue): # Only accept standard amino acids standard_aa = set('ACDEFGHIKLMNPQRSTVWY') return residue.get_resname() in standard_aa # Find the longest protein chain longest_sequence = "" longest_chain = None for model in structure: for chain in model: sequence = "" for residue in chain: if Select().accept_residue(residue): sequence += residue.get_resname() # Convert 3-letter amino acid codes to 1-letter aa_dict = { 'ALA':'A', 'CYS':'C', 'ASP':'D', 'GLU':'E', 'PHE':'F', 'GLY':'G', 'HIS':'H', 'ILE':'I', 'LYS':'K', 'LEU':'L', 'MET':'M', 'ASN':'N', 'PRO':'P', 'GLN':'Q', 'ARG':'R', 'SER':'S', 'THR':'T', 'VAL':'V', 'TRP':'W', 'TYR':'Y' } one_letter_sequence = ''.join([aa_dict.get(res, 'X') for res in sequence]) # Track the longest sequence if len(one_letter_sequence) > len(longest_sequence) and \ 10 < len(one_letter_sequence) < 1500: longest_sequence = one_letter_sequence longest_chain = chain return longest_sequence, longest_chain def process_pdb(pdb_id): # Fetch PDB file pdb_path = fetch_pdb(pdb_id) if not pdb_path: return "Failed to fetch PDB file", None, None # Extract protein sequence and chain protein_sequence, chain = extract_protein_sequence(pdb_path) if not protein_sequence: return "No suitable protein sequence found", None, None # Predict binding sites sequence, normalized_scores = predict_protein_sequence(protein_sequence) # Prepare representations for coloring residues reps = [] for i, (res, score) in enumerate(zip(sequence, normalized_scores), start=1): # Map score to a color gradient from blue (low) to red (high) color_intensity = int(score * 255) color = f'rgb({color_intensity}, 0, {255-color_intensity})' rep = { "model": 0, "chain": chain.id, "resname": res, "resnum": i, "style": "cartoon", "color": color, "residue_range": f"{i}-{i}", "around": 0, "byres": True, "visible": True } reps.append(rep) # Prepare result string result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)]) return result_str, reps, pdb_path # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# Protein Binding Site Prediction") with gr.Row(): with gr.Column(): # PDB ID input with default suggestion pdb_input = gr.Textbox( value="2IWI", label="PDB ID", placeholder="Enter PDB ID here..." ) # Predict button predict_btn = gr.Button("Predict Binding Sites") with gr.Column(): # Binding site predictions output predictions_output = gr.Textbox( label="Binding Site Predictions" ) # 3D Molecule visualization molecule_output = Molecule3D( label="Protein Structure", reps=[] # Start with empty representations ) # Prediction logic predict_btn.click( process_pdb, inputs=[pdb_input], outputs=[predictions_output, molecule_output, molecule_output] ) # Add some example inputs gr.Markdown("## Examples") gr.Examples( examples=[ ["2IWI"], ["1ABC"], ["4HHB"] ], inputs=[pdb_input], outputs=[predictions_output, molecule_output, molecule_output] ) demo.launch()