import gradio as gr from model_loader import load_model import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from torch.utils.data import DataLoader import re import numpy as np import os import pandas as pd import copy import transformers, datasets from transformers.modeling_outputs import TokenClassifierOutput from transformers.models.t5.modeling_t5 import T5Config, T5PreTrainedModel, T5Stack from transformers.utils.model_parallel_utils import assert_device_map, get_device_map from transformers import T5EncoderModel, T5Tokenizer from transformers.models.esm.modeling_esm import EsmPreTrainedModel, EsmModel from transformers import AutoTokenizer from transformers import TrainingArguments, Trainer, set_seed from transformers import DataCollatorForTokenClassification from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union # for custom DataCollator from transformers.data.data_collator import DataCollatorMixin from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.utils import PaddingStrategy from datasets import Dataset from scipy.special import expit #import peft #from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig checkpoint='ThorbenF/prot_t5_xl_uniref50' max_length=1500 model, tokenizer = load_model(checkpoint,max_length) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) model.eval() def create_dataset(tokenizer,seqs,labels,checkpoint): tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True) dataset = Dataset.from_dict(tokenized) if ("esm" in checkpoint) or ("ProstT5" in checkpoint): labels = [l[:max_length-2] for l in labels] else: labels = [l[:max_length-1] for l in labels] dataset = dataset.add_column("labels", labels) return dataset def convert_predictions(input_logits): all_probs = [] for logits in input_logits: logits = logits.reshape(-1, 2) # Mask out irrelevant regions # Compute probabilities for class 1 probabilities_class1 = expit(logits[:, 1] - logits[:, 0]) all_probs.append(probabilities_class1) return np.concatenate(all_probs) def normalize_scores(scores): min_score = np.min(scores) max_score = np.max(scores) return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores def predict_protein_sequence(test_one_letter_sequence): dummy_labels=[np.zeros(len(test_one_letter_sequence))] # Replace uncommon amino acids with "X" test_one_letter_sequence = test_one_letter_sequence.replace("O", "X").replace("B", "X").replace("U", "X").replace("Z", "X").replace("J", "X") # Add spaces between each amino acid for ProtT5 and ProstT5 models if ("prot_t5" in checkpoint) or ("ProstT5" in checkpoint): test_one_letter_sequence = " ".join(test_one_letter_sequence) # Add for ProstT5 model input format if "ProstT5" in checkpoint: test_one_letter_sequence = " " + test_one_letter_sequence test_dataset=create_dataset(tokenizer,[test_one_letter_sequence],dummy_labels,checkpoint) if ("esm" in checkpoint) or ("ProstT5" in checkpoint): data_collator = DataCollatorForTokenClassificationESM(tokenizer) else: data_collator = DataCollatorForTokenClassification(tokenizer) test_loader = DataLoader(test_dataset, batch_size=1, collate_fn=data_collator) for batch in test_loader: input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) labels = batch['labels'] # Ensure to get labels from batch outputs = model(input_ids, attention_mask=attention_mask) logits = outputs.logits.detach().cpu().numpy() logits = logits[:, :-1] #remove for prot_t5 the last element, because it is a special token logits=convert_predictions(logits) normalized_scores = normalize_scores(logits) test_one_letter_sequence = test_one_letter_sequence.replace(" ", "") result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(test_one_letter_sequence, normalized_scores)]) return result_str #interface = gr.Interface( # fn=predict_protein_sequence, # inputs=gr.Textbox(lines=2, placeholder="Enter protein sequence here..."), # outputs=gr.Textbox(), #gr.JSON(), # Use gr.JSON() for list or array-like outputs # title="Protein sequence - Binding site prediction", # description="Enter a protein sequence to predict its possible binding sites.", #) # Launch the app #interface.launch() # Function to fetch and visualize the PDB structure using py3Dmol def fetch_and_display_pdb(pdb_id): # Fetch the PDB structure from the RCSB pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb' response = requests.get(pdb_url) if response.status_code == 200: pdb_structure = response.text else: return "Failed to load PDB structure. Please check the PDB ID." # Initialize the viewer viewer = py3Dmol.view(width=800, height=400) viewer.addModel(pdb_structure, "pdb") viewer.setStyle({}, {"cartoon": {"color": "spectrum"}}) viewer.zoomTo() return viewer._make_html() # Define the Gradio interface interface = gr.Interface( fn=predict_protein_sequence, inputs=[ gr.Textbox(lines=2, placeholder="Enter protein sequence here...", label="Protein Sequence"), gr.Textbox(lines=1, placeholder="Enter PDB ID here...", label="PDB ID for 3D Visualization") ], outputs=[ gr.Textbox(label="Binding Site Predictions"), gr.HTML(label="3Dmol Viewer") # HTML output to render the 3Dmol viewer ], title="Protein Binding Site Prediction and 3D Structure Viewer", description="Input a protein sequence to predict binding sites and view the protein structure in 3D using its PDB ID.", ) # Launch the Gradio app interface.launch()