import gradio as gr from model_loader import load_model import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from torch.utils.data import DataLoader import re import numpy as np import os import pandas as pd import copy import transformers, datasets from transformers.modeling_outputs import TokenClassifierOutput from transformers.models.t5.modeling_t5 import T5Config, T5PreTrainedModel, T5Stack from transformers.utils.model_parallel_utils import assert_device_map, get_device_map from transformers import T5EncoderModel, T5Tokenizer from transformers.models.esm.modeling_esm import EsmPreTrainedModel, EsmModel from transformers import AutoTokenizer from transformers import TrainingArguments, Trainer, set_seed from transformers import DataCollatorForTokenClassification from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union # for custom DataCollator from transformers.data.data_collator import DataCollatorMixin from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.utils import PaddingStrategy from datasets import Dataset from scipy.special import expit import requests import py3Dmol #import peft #from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig # Configuration checkpoint = 'ThorbenF/prot_t5_xl_uniref50' max_length = 1500 # Load model and move to device model, tokenizer = load_model(checkpoint, max_length) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) model.eval() def create_dataset(tokenizer, seqs, labels, checkpoint): tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True) dataset = Dataset.from_dict(tokenized) # Adjust labels based on checkpoint if ("esm" in checkpoint) or ("ProstT5" in checkpoint): labels = [l[:max_length-2] for l in labels] else: labels = [l[:max_length-1] for l in labels] dataset = dataset.add_column("labels", labels) return dataset def convert_predictions(input_logits): all_probs = [] for logits in input_logits: logits = logits.reshape(-1, 2) probabilities_class1 = expit(logits[:, 1] - logits[:, 0]) all_probs.append(probabilities_class1) return np.concatenate(all_probs) def normalize_scores(scores): min_score = np.min(scores) max_score = np.max(scores) return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores def predict_protein_sequence(test_one_letter_sequence): # Sanitize input sequence test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \ .replace("B", "X").replace("U", "X") \ .replace("Z", "X").replace("J", "X") # Prepare sequence for different model types if ("prot_t5" in checkpoint) or ("ProstT5" in checkpoint): test_one_letter_sequence = " ".join(test_one_letter_sequence) if "ProstT5" in checkpoint: test_one_letter_sequence = " " + test_one_letter_sequence # Create dummy labels dummy_labels = [np.zeros(len(test_one_letter_sequence))] # Create dataset test_dataset = create_dataset(tokenizer, [test_one_letter_sequence], dummy_labels, checkpoint) # Select appropriate data collator data_collator = (DataCollatorForTokenClassification(tokenizer) if "esm" not in checkpoint and "ProstT5" not in checkpoint else DataCollatorForTokenClassification(tokenizer)) # Create data loader test_loader = DataLoader(test_dataset, batch_size=1, collate_fn=data_collator) # Predict for batch in test_loader: input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) with torch.no_grad(): outputs = model(input_ids, attention_mask=attention_mask) logits = outputs.logits.detach().cpu().numpy() # Process logits logits = logits[:, :-1] # Remove last element for prot_t5 logits = convert_predictions(logits) # Normalize and format results normalized_scores = normalize_scores(logits) test_one_letter_sequence = test_one_letter_sequence.replace(" ", "") result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(test_one_letter_sequence, normalized_scores)]) return result_str def fetch_and_display_pdb(pdb_id): try: # Fetch the PDB structure from RCSB pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb' response = requests.get(pdb_url) if response.status_code != 200: return "Failed to load PDB structure. Please check the PDB ID." pdb_structure = response.text # Prepare the 3D molecular visualization visualization = f"""
""" return visualization except Exception as e: return f"Error visualizing PDB: {str(e)}" def gradio_interface(sequence, pdb_id): # Predict binding sites binding_site_predictions = predict_protein_sequence(sequence) # Fetch and visualize PDB structure pdb_structure_html = fetch_and_display_pdb(pdb_id) return binding_site_predictions, pdb_structure_html # Create Gradio interface interface = gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(lines=2, placeholder="Enter protein sequence here...", label="Protein Sequence"), gr.Textbox(lines=1, placeholder="Enter PDB ID here...", label="PDB ID for 3D Visualization") ], outputs=[ gr.Textbox(label="Binding Site Predictions"), gr.HTML(label="3D Molecular Viewer") ], title="Protein Binding Site Prediction and 3D Structure Viewer", description="Input a protein sequence to predict binding sites and view the protein structure in 3D using its PDB ID.", ) interface.launch()