import gradio as gr import requests from Bio.PDB import PDBParser import numpy as np import os from gradio_molecule3d import Molecule3D from model_loader import load_model import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader import re import pandas as pd import copy import transformers, datasets from transformers import AutoTokenizer from transformers import DataCollatorForTokenClassification from datasets import Dataset from scipy.special import expit # Load model and move to device checkpoint = 'ThorbenF/prot_t5_xl_uniref50' max_length = 1500 model, tokenizer = load_model(checkpoint, max_length) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) model.eval() def normalize_scores(scores): min_score = np.min(scores) max_score = np.max(scores) return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores def read_mol(pdb_path): """Read PDB file and return its content as a string""" with open(pdb_path, 'r') as f: return f.read() def fetch_pdb(pdb_id): pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb' pdb_path = f'{pdb_id}.pdb' response = requests.get(pdb_url) if response.status_code == 200: with open(pdb_path, 'wb') as f: f.write(response.content) return pdb_path else: return None def process_pdb(pdb_id, segment): pdb_path = fetch_pdb(pdb_id) if not pdb_path: return "Failed to fetch PDB file", None, None parser = PDBParser(QUIET=1) structure = parser.get_structure('protein', pdb_path) try: chain = structure[0][segment] except KeyError: return "Invalid Chain ID", None, None # Comprehensive amino acid mapping aa_dict = { 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L', 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R', 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y', 'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P' } # Exclude non-amino acid residues sequence = [ residue for residue in chain if residue.get_resname().strip() in aa_dict ] # Prepare input for model prediction input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device) with torch.no_grad(): outputs = model(input_ids).logits.detach().cpu().numpy().squeeze() # Calculate scores and normalize them scores = expit(outputs[:, 1] - outputs[:, 0]) normalized_scores = normalize_scores(scores) result_str = "\n".join( f"{aa_dict[res.get_resname()]} {res.id[1]} {score:.2f}" for res, score in zip(sequence, normalized_scores) ) # Save the predictions to a file prediction_file = f"{pdb_id}_predictions.txt" with open(prediction_file, "w") as f: f.write(result_str) return result_str, molecule(pdb_path, random_scores, segment), prediction_file def molecule(input_pdb, scores=None, segment='A'): mol = read_mol(input_pdb) # Read PDB file content # Prepare high-scoring residues script if scores are provided high_score_script = "" if scores is not None: high_score_script = """ // Reset all styles first viewer.getModel(0).setStyle({}, {}); // Show only the selected chain viewer.getModel(0).setStyle( {"chain": "%s"}, { cartoon: {colorscheme:"whiteCarbon"} } ); // Highlight high-scoring residues only for the selected chain let highScoreResidues = [%s]; viewer.getModel(0).setStyle( {"chain": "%s", "resi": highScoreResidues}, {"stick": {"color": "red"}} ); // Highlight high-scoring residues only for the selected chain let highScoreResidues2 = [%s]; viewer.getModel(0).setStyle( {"chain": "%s", "resi": highScoreResidues2}, {"stick": {"color": "orange"}} ); """ % (segment, ", ".join(str(i+1) for i, score in enumerate(scores) if score > 0.8), segment, ", ".join(str(i+1) for i, score in enumerate(scores) if (score > 0.5) and (score < 0.8)), segment) html_content = f"""
""" # Return the HTML content within an iframe safely encoded for special characters return f'' reps = [ { "model": 0, "style": "cartoon", "color": "whiteCarbon", "residue_range": "", "around": 0, "byres": False, } ] # Gradio UI with gr.Blocks() as demo: gr.Markdown("# Protein Binding Site Prediction (Random Scores)") with gr.Row(): pdb_input = gr.Textbox(value="2IWI", label="PDB ID", placeholder="Enter PDB ID here...") visualize_btn = gr.Button("Visualize Structure") molecule_output2 = Molecule3D(label="Protein Structure", reps=reps) with gr.Row(): pdb_input = gr.Textbox(value="2IWI", label="PDB ID", placeholder="Enter PDB ID here...") segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...") prediction_btn = gr.Button("Predict Random Binding Site Scores") molecule_output = gr.HTML(label="Protein Structure") predictions_output = gr.Textbox(label="Binding Site Predictions") download_output = gr.File(label="Download Predictions") visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2) prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output]) gr.Markdown("## Examples") gr.Examples( examples=[ ["2IWI", "A"], ["7RPZ", "B"], ["3TJN", "C"] ], inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output] ) demo.launch(share=True)