{ "cells": [ { "cell_type": "code", "execution_count": 15, "id": "2c614d31-f96a-4164-8293-1cec9b0b2cd0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* Running on local URL: http://127.0.0.1:7870\n", "* Running on public URL: https://c83ac6a1bebcdb4528.gradio.live\n", "\n", "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from datetime import datetime\n", "import gradio as gr\n", "import requests\n", "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n", "from Bio.PDB.Polypeptide import is_aa\n", "from Bio.SeqUtils import seq1\n", "from typing import Optional, Tuple\n", "import numpy as np\n", "import os\n", "from gradio_molecule3d import Molecule3D\n", "\n", "import re\n", "import pandas as pd\n", "import copy\n", "\n", "from scipy.special import expit\n", "\n", "\n", "\n", "def normalize_scores(scores):\n", " min_score = np.min(scores)\n", " max_score = np.max(scores)\n", " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n", "\n", "def read_mol(pdb_path):\n", " \"\"\"Read PDB file and return its content as a string\"\"\"\n", " with open(pdb_path, 'r') as f:\n", " return f.read()\n", "\n", "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n", " \"\"\"\n", " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n", " If a structure file already exists locally, it uses that.\n", " \"\"\"\n", " file_path = download_structure(pdb_id, output_dir)\n", " if file_path:\n", " return file_path\n", " else:\n", " return None\n", "\n", "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n", " \"\"\"\n", " Attempt to download the structure file in CIF or PDB format.\n", " Returns the path to the downloaded file, or None if download fails.\n", " \"\"\"\n", " for ext in ['.cif', '.pdb']:\n", " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n", " if os.path.exists(file_path):\n", " return file_path\n", " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n", " try:\n", " response = requests.get(url, timeout=10)\n", " if response.status_code == 200:\n", " with open(file_path, 'wb') as f:\n", " f.write(response.content)\n", " return file_path\n", " except Exception as e:\n", " print(f\"Download error for {pdb_id}{ext}: {e}\")\n", " return None\n", "\n", "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n", " \"\"\"\n", " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n", " \"\"\"\n", " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n", " parser = MMCIFParser(QUIET=True)\n", " structure = parser.get_structure('protein', cif_path)\n", " io = PDBIO()\n", " io.set_structure(structure)\n", " io.save(pdb_path)\n", " return pdb_path\n", "\n", "def fetch_pdb(pdb_id):\n", " pdb_path = fetch_structure(pdb_id)\n", " if not pdb_path:\n", " return None\n", " _, ext = os.path.splitext(pdb_path)\n", " if ext == '.cif':\n", " pdb_path = convert_cif_to_pdb(pdb_path)\n", " return pdb_path\n", "\n", "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:\n", " \"\"\"\n", " Create a PDB file with only the specified chain and replace B-factor with prediction scores\n", " \"\"\"\n", " # Read the original PDB file\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', input_pdb)\n", " \n", " # Prepare a new structure with only the specified chain\n", " new_structure = structure.copy()\n", " for model in new_structure:\n", " # Remove all chains except the specified one\n", " chains_to_remove = [chain for chain in model if chain.id != chain_id]\n", " for chain in chains_to_remove:\n", " model.detach_child(chain.id)\n", " \n", " # Create a modified PDB with scores in B-factor\n", " scores_dict = {resi: score for resi, score in residue_scores}\n", " for model in new_structure:\n", " for chain in model:\n", " for residue in chain:\n", " if residue.id[1] in scores_dict:\n", " for atom in residue:\n", " atom.bfactor = scores_dict[residue.id[1]] #* 100 # Scale score to B-factor range\n", " \n", " # Save the modified structure\n", " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n", " io = PDBIO()\n", " io.set_structure(new_structure)\n", " io.save(output_pdb)\n", " \n", " return output_pdb\n", "\n", "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n", " \"\"\"\n", " Calculate the geometric center of high-scoring residues\n", " \"\"\"\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', pdb_path)\n", " \n", " # Collect coordinates of CA atoms from high-scoring residues\n", " coords = []\n", " for model in structure:\n", " for chain in model:\n", " if chain.id == chain_id:\n", " for residue in chain:\n", " if residue.id[1] in high_score_residues:\n", " if 'CA' in residue: # Use alpha carbon as representative\n", " ca_atom = residue['CA']\n", " coords.append(ca_atom.coord)\n", " \n", " # Calculate geometric center\n", " if coords:\n", " center = np.mean(coords, axis=0)\n", " return center\n", " return None\n", "\n", "\n", "\n", "def process_pdb(pdb_id_or_file, segment):\n", " # Determine if input is a PDB ID or file path\n", " if pdb_id_or_file.endswith('.pdb'):\n", " pdb_path = pdb_id_or_file\n", " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n", " else:\n", " pdb_id = pdb_id_or_file\n", " pdb_path = fetch_pdb(pdb_id)\n", " \n", " if not pdb_path:\n", " return \"Failed to fetch PDB file\", None, None\n", " \n", " # Determine the file format and choose the appropriate parser\n", " _, ext = os.path.splitext(pdb_path)\n", " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n", " \n", " try:\n", " # Parse the structure file\n", " structure = parser.get_structure('protein', pdb_path)\n", " except Exception as e:\n", " return f\"Error parsing structure file: {e}\", None, None\n", " \n", " # Extract the specified chain\n", " try:\n", " chain = structure[0][segment]\n", " except KeyError:\n", " return \"Invalid Chain ID\", None, None\n", " \n", " protein_residues = [res for res in chain if is_aa(res)]\n", " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n", " sequence_id = [res.id[1] for res in protein_residues]\n", " \n", " scores = np.random.rand(len(sequence))\n", " normalized_scores = normalize_scores(scores)\n", " \n", " # Zip residues with scores to track the residue ID and score\n", " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n", "\n", " # Identify high and mid scoring residues\n", " high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n", " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n", "\n", " # Calculate geometric center of high-scoring residues\n", " geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n", " pymol_selection = f\"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\"\n", " pymol_center_cmd = f\"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}\" if geo_center is not None else \"\"\n", "\n", " # Generate the result string\n", " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n", " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n", " result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n", " result_str += \"\\n\".join([\n", " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n", " for i, res in enumerate(protein_residues)])\n", " \n", " # Create prediction and scored PDB files\n", " prediction_file = f\"{pdb_id}_predictions.txt\"\n", " with open(prediction_file, \"w\") as f:\n", " f.write(result_str)\n", "\n", " # Create chain-specific PDB with scores in B-factor\n", " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)\n", "\n", " # Molecule visualization with updated script\n", " mol_vis = molecule(pdb_path, residue_scores, segment)\n", "\n", " # Construct PyMOL command suggestions\n", " pymol_commands = f\"\"\"\n", "PyMOL Visualization Commands:\n", "1. Load PDB: load {os.path.abspath(pdb_path)}\n", "2. Select high-scoring residues: {pymol_selection}\n", "3. Highlight high-scoring residues: show sticks, high_score_residues\n", "{pymol_center_cmd}\n", "\"\"\"\n", " \n", " return result_str + \"\\n\\n\" + pymol_commands, mol_vis, [prediction_file, scored_pdb]\n", "\n", "\n", "def molecule(input_pdb, residue_scores=None, segment='A'):\n", " mol = read_mol(input_pdb) # Read PDB file content\n", "\n", " # Prepare high-scoring residues script if scores are provided\n", " high_score_script = \"\"\n", " if residue_scores is not None:\n", " # Filter residues based on their scores\n", " high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n", " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n", " \n", " high_score_script = \"\"\"\n", " // Load the original model and apply white cartoon style\n", " let chainModel = viewer.addModel(pdb, \"pdb\");\n", " chainModel.setStyle({}, {});\n", " chainModel.setStyle(\n", " {\"chain\": \"%s\"}, \n", " {\"cartoon\": {\"color\": \"white\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let highScoreModel = viewer.addModel(pdb, \"pdb\");\n", " highScoreModel.setStyle({}, {});\n", " highScoreModel.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"red\"}}\n", " );\n", "\n", " // Create a new model for medium-scoring residues and apply orange sticks style\n", " let midScoreModel = viewer.addModel(pdb, \"pdb\");\n", " midScoreModel.setStyle({}, {});\n", " midScoreModel.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"orange\"}}\n", " );\n", " \"\"\" % (\n", " segment,\n", " segment,\n", " \", \".join(str(resi) for resi in high_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in mid_score_residues)\n", " )\n", " \n", " # Generate the full HTML content\n", " html_content = f\"\"\"\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " \n", " \"\"\"\n", " \n", " # Return the HTML content within an iframe safely encoded for special characters\n", " return f''\n", "\n", "\n", "# Gradio UI\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"# Protein Binding Site Prediction\")\n", " \n", " with gr.Row():\n", " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n", " visualize_btn = gr.Button(\"Visualize Structure\")\n", "\n", " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n", " {\n", " \"model\": 0,\n", " \"style\": \"cartoon\",\n", " \"color\": \"whiteCarbon\",\n", " \"residue_range\": \"\",\n", " \"around\": 0,\n", " \"byres\": False,\n", " }\n", " ])\n", "\n", " with gr.Row():\n", " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n", " prediction_btn = gr.Button(\"Predict Binding Site\")\n", "\n", "\n", " molecule_output = gr.HTML(label=\"Protein Structure\")\n", " predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n", " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n", " \n", " prediction_btn.click(\n", " process_pdb, \n", " inputs=[\n", " pdb_input, \n", " segment_input\n", " ], \n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", " visualize_btn.click(\n", " fetch_pdb, \n", " inputs=[pdb_input], \n", " outputs=molecule_output2\n", " )\n", "\n", " gr.Markdown(\"## Examples\")\n", " gr.Examples(\n", " examples=[\n", " [\"7RPZ\", \"A\"],\n", " [\"2IWI\", \"B\"],\n", " [\"2F6V\", \"A\"]\n", " ],\n", " inputs=[pdb_input, segment_input],\n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", "demo.launch(share=True)" ] }, { "cell_type": "code", "execution_count": 5, "id": "db0b4763-5368-4d73-b5f6-d1c168f7fcd8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* Running on local URL: http://127.0.0.1:7864\n", "* Running on public URL: https://060e61e5b829d9fb6e.gradio.live\n", "\n", "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from datetime import datetime\n", "import gradio as gr\n", "import requests\n", "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n", "from Bio.PDB.Polypeptide import is_aa\n", "from Bio.SeqUtils import seq1\n", "from Bio.PDB import Select\n", "from typing import Optional, Tuple\n", "import numpy as np\n", "import os\n", "from gradio_molecule3d import Molecule3D\n", "\n", "import re\n", "import pandas as pd\n", "import copy\n", "\n", "from scipy.special import expit\n", "\n", "def normalize_scores(scores):\n", " min_score = np.min(scores)\n", " max_score = np.max(scores)\n", " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n", "\n", "def read_mol(pdb_path):\n", " \"\"\"Read PDB file and return its content as a string\"\"\"\n", " with open(pdb_path, 'r') as f:\n", " return f.read()\n", "\n", "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n", " \"\"\"\n", " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n", " If a structure file already exists locally, it uses that.\n", " \"\"\"\n", " file_path = download_structure(pdb_id, output_dir)\n", " if file_path:\n", " return file_path\n", " else:\n", " return None\n", "\n", "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n", " \"\"\"\n", " Attempt to download the structure file in CIF or PDB format.\n", " Returns the path to the downloaded file, or None if download fails.\n", " \"\"\"\n", " for ext in ['.cif', '.pdb']:\n", " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n", " if os.path.exists(file_path):\n", " return file_path\n", " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n", " try:\n", " response = requests.get(url, timeout=10)\n", " if response.status_code == 200:\n", " with open(file_path, 'wb') as f:\n", " f.write(response.content)\n", " return file_path\n", " except Exception as e:\n", " print(f\"Download error for {pdb_id}{ext}: {e}\")\n", " return None\n", "\n", "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n", " \"\"\"\n", " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n", " \"\"\"\n", " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n", " parser = MMCIFParser(QUIET=True)\n", " structure = parser.get_structure('protein', cif_path)\n", " io = PDBIO()\n", " io.set_structure(structure)\n", " io.save(pdb_path)\n", " return pdb_path\n", "\n", "def fetch_pdb(pdb_id):\n", " pdb_path = fetch_structure(pdb_id)\n", " if not pdb_path:\n", " return None\n", " _, ext = os.path.splitext(pdb_path)\n", " if ext == '.cif':\n", " pdb_path = convert_cif_to_pdb(pdb_path)\n", " return pdb_path\n", "\n", "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n", " \"\"\"\n", " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n", " \"\"\"\n", " # Read the original PDB file\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', input_pdb)\n", " \n", " # Prepare a new structure with only the specified chain and selected residues\n", " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n", " \n", " # Create scores dictionary for easy lookup\n", " scores_dict = {resi: score for resi, score in residue_scores}\n", "\n", " # Create a custom Select class\n", " class ResidueSelector(Select):\n", " def __init__(self, chain_id, selected_residues, scores_dict):\n", " self.chain_id = chain_id\n", " self.selected_residues = selected_residues\n", " self.scores_dict = scores_dict\n", " \n", " def accept_chain(self, chain):\n", " return chain.id == self.chain_id\n", " \n", " def accept_residue(self, residue):\n", " return residue.id[1] in self.selected_residues\n", "\n", " def accept_atom(self, atom):\n", " if atom.parent.id[1] in self.scores_dict:\n", " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n", " return True\n", "\n", " # Prepare output PDB with selected chain and residues, modified B-factors\n", " io = PDBIO()\n", " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n", " \n", " io.set_structure(structure[0])\n", " io.save(output_pdb, selector)\n", " \n", " return output_pdb\n", "\n", "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n", " \"\"\"\n", " Calculate the geometric center of high-scoring residues\n", " \"\"\"\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', pdb_path)\n", " \n", " # Collect coordinates of CA atoms from high-scoring residues\n", " coords = []\n", " for model in structure:\n", " for chain in model:\n", " if chain.id == chain_id:\n", " for residue in chain:\n", " if residue.id[1] in high_score_residues:\n", " if 'CA' in residue: # Use alpha carbon as representative\n", " ca_atom = residue['CA']\n", " coords.append(ca_atom.coord)\n", " \n", " # Calculate geometric center\n", " if coords:\n", " center = np.mean(coords, axis=0)\n", " return center\n", " return None\n", "\n", "def process_pdb(pdb_id_or_file, segment):\n", " # Determine if input is a PDB ID or file path\n", " if pdb_id_or_file.endswith('.pdb'):\n", " pdb_path = pdb_id_or_file\n", " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n", " else:\n", " pdb_id = pdb_id_or_file\n", " pdb_path = fetch_pdb(pdb_id)\n", " \n", " if not pdb_path:\n", " return \"Failed to fetch PDB file\", None, None\n", " \n", " # Determine the file format and choose the appropriate parser\n", " _, ext = os.path.splitext(pdb_path)\n", " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n", " \n", " try:\n", " # Parse the structure file\n", " structure = parser.get_structure('protein', pdb_path)\n", " except Exception as e:\n", " return f\"Error parsing structure file: {e}\", None, None\n", " \n", " # Extract the specified chain\n", " try:\n", " chain = structure[0][segment]\n", " except KeyError:\n", " return \"Invalid Chain ID\", None, None\n", " \n", " protein_residues = [res for res in chain if is_aa(res)]\n", " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n", " sequence_id = [res.id[1] for res in protein_residues]\n", " \n", " scores = np.random.rand(len(sequence))\n", " normalized_scores = normalize_scores(scores)\n", " \n", " # Zip residues with scores to track the residue ID and score\n", " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n", "\n", " # More granular scoring for visualization\n", " def score_to_color(score):\n", " if score <= 0.6:\n", " return \"blue\"\n", " elif score <= 0.7:\n", " return \"lightblue\"\n", " elif score <= 0.8:\n", " return \"white\"\n", " elif score <= 0.9:\n", " return \"orange\"\n", " elif score > 0.9:\n", " return \"red\"\n", "\n", " color_map = {resi: score_to_color(score) for resi, score in residue_scores}\n", " \n", " # Identify high scoring residues (> 0.7)\n", " high_score_residues = [resi for resi, score in residue_scores if score > 0.7]\n", " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.7]\n", "\n", " # Calculate geometric center of high-scoring residues\n", " geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n", "\n", " # Preparing the result: only print high scoring residues\n", " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\n\"\n", " result_str += \"High-scoring Residues (Score > 0.7):\\n\"\n", " result_str += \"\\n\".join([\n", " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n", " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n", " ])\n", " \n", " # Create chain-specific PDB with scores in B-factor\n", " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n", "\n", " # Molecule visualization with updated script with color mapping\n", " mol_vis = molecule(pdb_path, residue_scores, segment) #, color_map)\n", "\n", " # Improved PyMOL command suggestions\n", " pymol_commands = f\"\"\"\n", "# PyMOL Visualization Commands\n", "load {os.path.abspath(pdb_path)}, protein\n", "hide everything, all\n", "show cartoon, chain {segment}\n", "color white, chain {segment}\n", "\"\"\"\n", " \n", " # Color specific residues\n", " for score_range, color in [\n", " (high_score_residues, \"red\"), \n", " (mid_score_residues, \"orange\")\n", " ]:\n", " if score_range:\n", " resi_list = '+'.join(map(str, score_range))\n", " pymol_commands += f\"\"\"\n", "select high_score_residues, resi {resi_list} and chain {segment}\n", "show sticks, high_score_residues\n", "color {color}, high_score_residues\n", "\"\"\"\n", " \n", " return result_str, mol_vis, [scored_pdb]\n", "\n", "def molecule(input_pdb, residue_scores=None, segment='A'):\n", " mol = read_mol(input_pdb) # Read PDB file content\n", "\n", " # Prepare high-scoring residues script if scores are provided\n", " high_score_script = \"\"\n", " if residue_scores is not None:\n", " # Filter residues based on their scores\n", " high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n", " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n", " \n", " high_score_script = \"\"\"\n", " // Load the original model and apply white cartoon style\n", " let chainModel = viewer.addModel(pdb, \"pdb\");\n", " chainModel.setStyle({}, {});\n", " chainModel.setStyle(\n", " {\"chain\": \"%s\"}, \n", " {\"cartoon\": {\"color\": \"white\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let highScoreModel = viewer.addModel(pdb, \"pdb\");\n", " highScoreModel.setStyle({}, {});\n", " highScoreModel.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"red\"}}\n", " );\n", "\n", " // Create a new model for medium-scoring residues and apply orange sticks style\n", " let midScoreModel = viewer.addModel(pdb, \"pdb\");\n", " midScoreModel.setStyle({}, {});\n", " midScoreModel.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"orange\"}}\n", " );\n", " \"\"\" % (\n", " segment,\n", " segment,\n", " \", \".join(str(resi) for resi in high_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in mid_score_residues)\n", " )\n", " \n", " # Generate the full HTML content\n", " html_content = f\"\"\"\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " \n", " \"\"\"\n", " \n", " # Return the HTML content within an iframe safely encoded for special characters\n", " return f''\n", "\n", "# Gradio UI\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"# Protein Binding Site Prediction\")\n", " \n", " with gr.Row():\n", " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n", " visualize_btn = gr.Button(\"Visualize Structure\")\n", "\n", " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n", " {\n", " \"model\": 0,\n", " \"style\": \"cartoon\",\n", " \"color\": \"whiteCarbon\",\n", " \"residue_range\": \"\",\n", " \"around\": 0,\n", " \"byres\": False,\n", " }\n", " ])\n", "\n", " with gr.Row():\n", " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n", " prediction_btn = gr.Button(\"Predict Binding Site\")\n", "\n", " molecule_output = gr.HTML(label=\"Protein Structure\")\n", " predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n", " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n", " \n", " prediction_btn.click(\n", " process_pdb, \n", " inputs=[\n", " pdb_input, \n", " segment_input\n", " ], \n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", " visualize_btn.click(\n", " fetch_pdb, \n", " inputs=[pdb_input], \n", " outputs=molecule_output2\n", " )\n", "\n", " gr.Markdown(\"## Examples\")\n", " gr.Examples(\n", " examples=[\n", " [\"7RPZ\", \"A\"],\n", " [\"2IWI\", \"B\"],\n", " [\"2F6V\", \"A\"]\n", " ],\n", " inputs=[pdb_input, segment_input],\n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", "demo.launch(share=True)" ] }, { "cell_type": "code", "execution_count": 7, "id": "d0d50415-1304-462d-a176-b58f394e79b2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* Running on local URL: http://127.0.0.1:7866\n", "* Running on public URL: https://a9ff499df0a5f7be8c.gradio.live\n", "\n", "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from datetime import datetime\n", "import gradio as gr\n", "import requests\n", "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n", "from Bio.PDB.Polypeptide import is_aa\n", "from Bio.SeqUtils import seq1\n", "from Bio.PDB import Select\n", "from typing import Optional, Tuple\n", "import numpy as np\n", "import os\n", "from gradio_molecule3d import Molecule3D\n", "\n", "import re\n", "import pandas as pd\n", "import copy\n", "\n", "from scipy.special import expit\n", "\n", "def normalize_scores(scores):\n", " min_score = np.min(scores)\n", " max_score = np.max(scores)\n", " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n", "\n", "def read_mol(pdb_path):\n", " \"\"\"Read PDB file and return its content as a string\"\"\"\n", " with open(pdb_path, 'r') as f:\n", " return f.read()\n", "\n", "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n", " \"\"\"\n", " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n", " If a structure file already exists locally, it uses that.\n", " \"\"\"\n", " file_path = download_structure(pdb_id, output_dir)\n", " if file_path:\n", " return file_path\n", " else:\n", " return None\n", "\n", "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n", " \"\"\"\n", " Attempt to download the structure file in CIF or PDB format.\n", " Returns the path to the downloaded file, or None if download fails.\n", " \"\"\"\n", " for ext in ['.cif', '.pdb']:\n", " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n", " if os.path.exists(file_path):\n", " return file_path\n", " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n", " try:\n", " response = requests.get(url, timeout=10)\n", " if response.status_code == 200:\n", " with open(file_path, 'wb') as f:\n", " f.write(response.content)\n", " return file_path\n", " except Exception as e:\n", " print(f\"Download error for {pdb_id}{ext}: {e}\")\n", " return None\n", "\n", "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n", " \"\"\"\n", " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n", " \"\"\"\n", " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n", " parser = MMCIFParser(QUIET=True)\n", " structure = parser.get_structure('protein', cif_path)\n", " io = PDBIO()\n", " io.set_structure(structure)\n", " io.save(pdb_path)\n", " return pdb_path\n", "\n", "def fetch_pdb(pdb_id):\n", " pdb_path = fetch_structure(pdb_id)\n", " if not pdb_path:\n", " return None\n", " _, ext = os.path.splitext(pdb_path)\n", " if ext == '.cif':\n", " pdb_path = convert_cif_to_pdb(pdb_path)\n", " return pdb_path\n", "\n", "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n", " \"\"\"\n", " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n", " \"\"\"\n", " # Read the original PDB file\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', input_pdb)\n", " \n", " # Prepare a new structure with only the specified chain and selected residues\n", " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n", " \n", " # Create scores dictionary for easy lookup\n", " scores_dict = {resi: score for resi, score in residue_scores}\n", "\n", " # Create a custom Select class\n", " class ResidueSelector(Select):\n", " def __init__(self, chain_id, selected_residues, scores_dict):\n", " self.chain_id = chain_id\n", " self.selected_residues = selected_residues\n", " self.scores_dict = scores_dict\n", " \n", " def accept_chain(self, chain):\n", " return chain.id == self.chain_id\n", " \n", " def accept_residue(self, residue):\n", " return residue.id[1] in self.selected_residues\n", "\n", " def accept_atom(self, atom):\n", " if atom.parent.id[1] in self.scores_dict:\n", " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n", " return True\n", "\n", " # Prepare output PDB with selected chain and residues, modified B-factors\n", " io = PDBIO()\n", " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n", " \n", " io.set_structure(structure[0])\n", " io.save(output_pdb, selector)\n", " \n", " return output_pdb\n", "\n", "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n", " \"\"\"\n", " Calculate the geometric center of high-scoring residues\n", " \"\"\"\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', pdb_path)\n", " \n", " # Collect coordinates of CA atoms from high-scoring residues\n", " coords = []\n", " for model in structure:\n", " for chain in model:\n", " if chain.id == chain_id:\n", " for residue in chain:\n", " if residue.id[1] in high_score_residues:\n", " if 'CA' in residue: # Use alpha carbon as representative\n", " ca_atom = residue['CA']\n", " coords.append(ca_atom.coord)\n", " \n", " # Calculate geometric center\n", " if coords:\n", " center = np.mean(coords, axis=0)\n", " return center\n", " return None\n", "\n", "def process_pdb(pdb_id_or_file, segment):\n", " # Determine if input is a PDB ID or file path\n", " if pdb_id_or_file.endswith('.pdb'):\n", " pdb_path = pdb_id_or_file\n", " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n", " else:\n", " pdb_id = pdb_id_or_file\n", " pdb_path = fetch_pdb(pdb_id)\n", " \n", " if not pdb_path:\n", " return \"Failed to fetch PDB file\", None, None\n", " \n", " # Determine the file format and choose the appropriate parser\n", " _, ext = os.path.splitext(pdb_path)\n", " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n", " \n", " try:\n", " # Parse the structure file\n", " structure = parser.get_structure('protein', pdb_path)\n", " except Exception as e:\n", " return f\"Error parsing structure file: {e}\", None, None\n", " \n", " # Extract the specified chain\n", " try:\n", " chain = structure[0][segment]\n", " except KeyError:\n", " return \"Invalid Chain ID\", None, None\n", " \n", " protein_residues = [res for res in chain if is_aa(res)]\n", " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n", " sequence_id = [res.id[1] for res in protein_residues]\n", " \n", " scores = np.random.rand(len(sequence))\n", " normalized_scores = normalize_scores(scores)\n", " \n", " # Zip residues with scores to track the residue ID and score\n", " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n", "\n", " # More granular scoring for visualization\n", " def score_to_color(score):\n", " if score <= 0.6:\n", " return \"blue\"\n", " elif score <= 0.7:\n", " return \"lightblue\"\n", " elif score <= 0.8:\n", " return \"white\"\n", " elif score <= 0.9:\n", " return \"orange\"\n", " elif score > 0.9:\n", " return \"red\"\n", "\n", " color_map = {resi: score_to_color(score) for resi, score in residue_scores}\n", " \n", " # Identify high scoring residues (> 0.7)\n", " high_score_residues = [resi for resi, score in residue_scores if score > 0.7]\n", " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.7]\n", "\n", " # Calculate geometric center of high-scoring residues\n", " geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)\n", "\n", " # Preparing the result: only print high scoring residues\n", " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\n\"\n", " result_str += \"High-scoring Residues (Score > 0.7):\\n\"\n", " result_str += \"\\n\".join([\n", " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n", " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n", " ])\n", "\n", " # Create prediction and scored PDB files\n", " prediction_file = f\"{pdb_id}_predictions.txt\"\n", " with open(prediction_file, \"w\") as f:\n", " f.write(result_str)\n", " \n", " # Create chain-specific PDB with scores in B-factor\n", " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n", "\n", " # Molecule visualization with updated script with color mapping\n", " mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)\n", "\n", " # Improved PyMOL command suggestions\n", " pymol_commands = f\"\"\"\n", "# PyMOL Visualization Commands\n", "load {os.path.abspath(pdb_path)}, protein\n", "hide everything, all\n", "show cartoon, chain {segment}\n", "color white, chain {segment}\n", "\"\"\"\n", " \n", " # Color specific residues\n", " for score_range, color in [\n", " (high_score_residues, \"red\"), \n", " (mid_score_residues, \"orange\")\n", " ]:\n", " if score_range:\n", " resi_list = '+'.join(map(str, score_range))\n", " pymol_commands += f\"\"\"\n", "select high_score_residues, resi {resi_list} and chain {segment}\n", "show sticks, high_score_residues\n", "color {color}, high_score_residues\n", "\"\"\"\n", " \n", " return result_str, mol_vis, [prediction_file,scored_pdb]\n", "\n", "def molecule(input_pdb, residue_scores=None, segment='A'):\n", " mol = read_mol(input_pdb) # Read PDB file content\n", "\n", " # Prepare high-scoring residues script if scores are provided\n", " high_score_script = \"\"\n", " if residue_scores is not None:\n", " # Filter residues based on their scores\n", " high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n", " mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n", " \n", " high_score_script = \"\"\"\n", " // Load the original model and apply white cartoon style\n", " let chainModel = viewer.addModel(pdb, \"pdb\");\n", " chainModel.setStyle({}, {});\n", " chainModel.setStyle(\n", " {\"chain\": \"%s\"}, \n", " {\"cartoon\": {\"color\": \"white\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let highScoreModel = viewer.addModel(pdb, \"pdb\");\n", " highScoreModel.setStyle({}, {});\n", " highScoreModel.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"red\"}}\n", " );\n", "\n", " // Create a new model for medium-scoring residues and apply orange sticks style\n", " let midScoreModel = viewer.addModel(pdb, \"pdb\");\n", " midScoreModel.setStyle({}, {});\n", " midScoreModel.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"orange\"}}\n", " );\n", " \"\"\" % (\n", " segment,\n", " segment,\n", " \", \".join(str(resi) for resi in high_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in mid_score_residues)\n", " )\n", " \n", " # Generate the full HTML content\n", " html_content = f\"\"\"\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " \n", " \"\"\"\n", " \n", " # Return the HTML content within an iframe safely encoded for special characters\n", " return f''\n", "\n", "# Gradio UI\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"# Protein Binding Site Prediction\")\n", " \n", " with gr.Row():\n", " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n", " visualize_btn = gr.Button(\"Visualize Structure\")\n", "\n", " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n", " {\n", " \"model\": 0,\n", " \"style\": \"cartoon\",\n", " \"color\": \"whiteCarbon\",\n", " \"residue_range\": \"\",\n", " \"around\": 0,\n", " \"byres\": False,\n", " }\n", " ])\n", "\n", " with gr.Row():\n", " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n", " prediction_btn = gr.Button(\"Predict Binding Site\")\n", "\n", " molecule_output = gr.HTML(label=\"Protein Structure\")\n", " predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n", " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n", " \n", " prediction_btn.click(\n", " process_pdb, \n", " inputs=[\n", " pdb_input, \n", " segment_input\n", " ], \n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", " visualize_btn.click(\n", " fetch_pdb, \n", " inputs=[pdb_input], \n", " outputs=molecule_output2\n", " )\n", "\n", " gr.Markdown(\"## Examples\")\n", " gr.Examples(\n", " examples=[\n", " [\"7RPZ\", \"A\"],\n", " [\"2IWI\", \"B\"],\n", " [\"2F6V\", \"A\"]\n", " ],\n", " inputs=[pdb_input, segment_input],\n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", "demo.launch(share=True)" ] }, { "cell_type": "code", "execution_count": 34, "id": "004ab20c-5273-44b9-bc69-d41f236296e4", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* Running on local URL: http://127.0.0.1:7890\n", "* Running on public URL: https://a7f63d297aa65a70de.gradio.live\n", "\n", "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from datetime import datetime\n", "import gradio as gr\n", "import requests\n", "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n", "from Bio.PDB.Polypeptide import is_aa\n", "from Bio.SeqUtils import seq1\n", "from Bio.PDB import Select\n", "from typing import Optional, Tuple\n", "import numpy as np\n", "import os\n", "from gradio_molecule3d import Molecule3D\n", "\n", "import re\n", "import pandas as pd\n", "import copy\n", "\n", "from scipy.special import expit\n", "\n", "def normalize_scores(scores):\n", " min_score = np.min(scores)\n", " max_score = np.max(scores)\n", " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n", "\n", "def read_mol(pdb_path):\n", " \"\"\"Read PDB file and return its content as a string\"\"\"\n", " with open(pdb_path, 'r') as f:\n", " return f.read()\n", "\n", "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n", " \"\"\"\n", " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n", " If a structure file already exists locally, it uses that.\n", " \"\"\"\n", " file_path = download_structure(pdb_id, output_dir)\n", " if file_path:\n", " return file_path\n", " else:\n", " return None\n", "\n", "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n", " \"\"\"\n", " Attempt to download the structure file in CIF or PDB format.\n", " Returns the path to the downloaded file, or None if download fails.\n", " \"\"\"\n", " for ext in ['.cif', '.pdb']:\n", " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n", " if os.path.exists(file_path):\n", " return file_path\n", " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n", " try:\n", " response = requests.get(url, timeout=10)\n", " if response.status_code == 200:\n", " with open(file_path, 'wb') as f:\n", " f.write(response.content)\n", " return file_path\n", " except Exception as e:\n", " print(f\"Download error for {pdb_id}{ext}: {e}\")\n", " return None\n", "\n", "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n", " \"\"\"\n", " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n", " \"\"\"\n", " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n", " parser = MMCIFParser(QUIET=True)\n", " structure = parser.get_structure('protein', cif_path)\n", " io = PDBIO()\n", " io.set_structure(structure)\n", " io.save(pdb_path)\n", " return pdb_path\n", "\n", "def fetch_pdb(pdb_id):\n", " pdb_path = fetch_structure(pdb_id)\n", " if not pdb_path:\n", " return None\n", " _, ext = os.path.splitext(pdb_path)\n", " if ext == '.cif':\n", " pdb_path = convert_cif_to_pdb(pdb_path)\n", " return pdb_path\n", "\n", "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n", " \"\"\"\n", " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n", " \"\"\"\n", " # Read the original PDB file\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', input_pdb)\n", " \n", " # Prepare a new structure with only the specified chain and selected residues\n", " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_scored.pdb\"\n", " \n", " # Create scores dictionary for easy lookup\n", " scores_dict = {resi: score for resi, score in residue_scores}\n", "\n", " # Create a custom Select class\n", " class ResidueSelector(Select):\n", " def __init__(self, chain_id, selected_residues, scores_dict):\n", " self.chain_id = chain_id\n", " self.selected_residues = selected_residues\n", " self.scores_dict = scores_dict\n", " \n", " def accept_chain(self, chain):\n", " return chain.id == self.chain_id\n", " \n", " def accept_residue(self, residue):\n", " return residue.id[1] in self.selected_residues\n", "\n", " def accept_atom(self, atom):\n", " if atom.parent.id[1] in self.scores_dict:\n", " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n", " return True\n", "\n", " # Prepare output PDB with selected chain and residues, modified B-factors\n", " io = PDBIO()\n", " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n", " \n", " io.set_structure(structure[0])\n", " io.save(output_pdb, selector)\n", " \n", " return output_pdb\n", "\n", "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n", " \"\"\"\n", " Calculate the geometric center of high-scoring residues\n", " \"\"\"\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', pdb_path)\n", " \n", " # Collect coordinates of CA atoms from high-scoring residues\n", " coords = []\n", " for model in structure:\n", " for chain in model:\n", " if chain.id == chain_id:\n", " for residue in chain:\n", " if residue.id[1] in high_score_residues:\n", " if 'CA' in residue: # Use alpha carbon as representative\n", " ca_atom = residue['CA']\n", " coords.append(ca_atom.coord)\n", " \n", " # Calculate geometric center\n", " if coords:\n", " center = np.mean(coords, axis=0)\n", " return center\n", " return None\n", "\n", "def process_pdb(pdb_id_or_file, segment):\n", " # Determine if input is a PDB ID or file path\n", " if pdb_id_or_file.endswith('.pdb'):\n", " pdb_path = pdb_id_or_file\n", " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n", " else:\n", " pdb_id = pdb_id_or_file\n", " pdb_path = fetch_pdb(pdb_id)\n", " \n", " if not pdb_path:\n", " return \"Failed to fetch PDB file\", None, None\n", " \n", " # Determine the file format and choose the appropriate parser\n", " _, ext = os.path.splitext(pdb_path)\n", " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n", " \n", " try:\n", " # Parse the structure file\n", " structure = parser.get_structure('protein', pdb_path)\n", " except Exception as e:\n", " return f\"Error parsing structure file: {e}\", None, None\n", " \n", " # Extract the specified chain\n", " try:\n", " chain = structure[0][segment]\n", " except KeyError:\n", " return \"Invalid Chain ID\", None, None\n", " \n", " protein_residues = [res for res in chain if is_aa(res)]\n", " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n", " sequence_id = [res.id[1] for res in protein_residues]\n", " \n", " scores = np.random.rand(len(sequence))\n", " normalized_scores = normalize_scores(scores)\n", " \n", " # Zip residues with scores to track the residue ID and score\n", " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n", "\n", " \n", " # Identify high scoring residues (> 0.5)\n", " high_score_residues = [resi for resi, score in residue_scores if score > 0.5]\n", " \n", " # Preparing the result: only print high scoring residues\n", " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n", " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n", " result_str += \"High-scoring Residues (Score > 0.5):\\n\"\n", " result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n", " result_str += \"\\n\".join([\n", " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n", " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n", " ])\n", "\n", " # Create chain-specific PDB with scores in B-factor\n", " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n", "\n", " # Molecule visualization with updated script with color mapping\n", " mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)\n", "\n", " # Improved PyMOL command suggestions\n", " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n", " pymol_commands = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n", " \n", " pymol_commands += f\"\"\"\n", "# PyMOL Visualization Commands\n", "load {os.path.abspath(pdb_path)}, protein\n", "hide everything, all\n", "show cartoon, chain {segment}\n", "color white, chain {segment}\n", "\"\"\"\n", " \n", " # Color specific residues\n", " for score_range, color in [\n", " (high_score_residues, \"red\")\n", " ]:\n", " if score_range:\n", " resi_list = '+'.join(map(str, score_range))\n", " pymol_commands += f\"\"\"\n", "select high_score_residues, resi {resi_list} and chain {segment}\n", "show sticks, high_score_residues\n", "color {color}, high_score_residues\n", "\"\"\"\n", " # Create prediction and scored PDB files\n", " prediction_file = f\"{pdb_id}_predictions.txt\"\n", " with open(prediction_file, \"w\") as f:\n", " f.write(result_str)\n", " \n", " return pymol_commands, mol_vis, [prediction_file,scored_pdb]\n", "\n", "def molecule(input_pdb, residue_scores=None, segment='A'):\n", " # More granular scoring for visualization\n", " mol = read_mol(input_pdb) # Read PDB file content\n", "\n", " # Prepare high-scoring residues script if scores are provided\n", " high_score_script = \"\"\n", " if residue_scores is not None:\n", " # Filter residues based on their scores\n", " class1_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.6]\n", " class2_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.7]\n", " class3_score_residues = [resi for resi, score in residue_scores if 0.7 < score <= 0.8]\n", " class4_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]\n", " class5_score_residues = [resi for resi, score in residue_scores if 0.9 < score <= 1.0]\n", " \n", " high_score_script = \"\"\"\n", " // Load the original model and apply white cartoon style\n", " let chainModel = viewer.addModel(pdb, \"pdb\");\n", " chainModel.setStyle({}, {});\n", " chainModel.setStyle(\n", " {\"chain\": \"%s\"}, \n", " {\"cartoon\": {\"color\": \"white\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class1Model = viewer.addModel(pdb, \"pdb\");\n", " class1Model.setStyle({}, {});\n", " class1Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"blue\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class2Model = viewer.addModel(pdb, \"pdb\");\n", " class2Model.setStyle({}, {});\n", " class2Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"lightblue\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class3Model = viewer.addModel(pdb, \"pdb\");\n", " class3Model.setStyle({}, {});\n", " class3Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"white\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class4Model = viewer.addModel(pdb, \"pdb\");\n", " class4Model.setStyle({}, {});\n", " class4Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"orange\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class5Model = viewer.addModel(pdb, \"pdb\");\n", " class5Model.setStyle({}, {});\n", " class5Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"red\"}}\n", " );\n", "\n", " \"\"\" % (\n", " segment,\n", " segment,\n", " \", \".join(str(resi) for resi in class1_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class2_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class3_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class4_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class5_score_residues)\n", " )\n", " \n", " # Generate the full HTML content\n", " html_content = f\"\"\"\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " \n", " \"\"\"\n", " \n", " # Return the HTML content within an iframe safely encoded for special characters\n", " return f''\n", "\n", "# Gradio UI\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"# Protein Binding Site Prediction\")\n", " \n", " with gr.Row():\n", " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n", " visualize_btn = gr.Button(\"Visualize Structure\")\n", "\n", " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n", " {\n", " \"model\": 0,\n", " \"style\": \"cartoon\",\n", " \"color\": \"whiteCarbon\",\n", " \"residue_range\": \"\",\n", " \"around\": 0,\n", " \"byres\": False,\n", " }\n", " ])\n", "\n", " with gr.Row():\n", " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n", " prediction_btn = gr.Button(\"Predict Binding Site\")\n", "\n", " molecule_output = gr.HTML(label=\"Protein Structure\")\n", " predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n", " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n", " \n", " prediction_btn.click(\n", " process_pdb, \n", " inputs=[\n", " pdb_input, \n", " segment_input\n", " ], \n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", " visualize_btn.click(\n", " fetch_pdb, \n", " inputs=[pdb_input], \n", " outputs=molecule_output2\n", " )\n", "\n", " gr.Markdown(\"## Examples\")\n", " gr.Examples(\n", " examples=[\n", " [\"7RPZ\", \"A\"],\n", " [\"2IWI\", \"B\"],\n", " [\"2F6V\", \"A\"]\n", " ],\n", " inputs=[pdb_input, segment_input],\n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", "demo.launch(share=True)" ] }, { "cell_type": "code", "execution_count": 35, "id": "a492c5c5-e0aa-4445-9375-64cfdb963e04", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* Running on local URL: http://127.0.0.1:7891\n", "* Running on public URL: https://339346b4ad32f608d0.gradio.live\n", "\n", "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from datetime import datetime\n", "import gradio as gr\n", "import requests\n", "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n", "from Bio.PDB.Polypeptide import is_aa\n", "from Bio.SeqUtils import seq1\n", "from Bio.PDB import Select\n", "from typing import Optional, Tuple\n", "import numpy as np\n", "import os\n", "from gradio_molecule3d import Molecule3D\n", "\n", "import re\n", "import pandas as pd\n", "import copy\n", "\n", "from scipy.special import expit\n", "\n", "def normalize_scores(scores):\n", " min_score = np.min(scores)\n", " max_score = np.max(scores)\n", " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n", "\n", "def read_mol(pdb_path):\n", " \"\"\"Read PDB file and return its content as a string\"\"\"\n", " with open(pdb_path, 'r') as f:\n", " return f.read()\n", "\n", "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n", " \"\"\"\n", " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n", " If a structure file already exists locally, it uses that.\n", " \"\"\"\n", " file_path = download_structure(pdb_id, output_dir)\n", " if file_path:\n", " return file_path\n", " else:\n", " return None\n", "\n", "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n", " \"\"\"\n", " Attempt to download the structure file in CIF or PDB format.\n", " Returns the path to the downloaded file, or None if download fails.\n", " \"\"\"\n", " for ext in ['.cif', '.pdb']:\n", " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n", " if os.path.exists(file_path):\n", " return file_path\n", " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n", " try:\n", " response = requests.get(url, timeout=10)\n", " if response.status_code == 200:\n", " with open(file_path, 'wb') as f:\n", " f.write(response.content)\n", " return file_path\n", " except Exception as e:\n", " print(f\"Download error for {pdb_id}{ext}: {e}\")\n", " return None\n", "\n", "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n", " \"\"\"\n", " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n", " \"\"\"\n", " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n", " parser = MMCIFParser(QUIET=True)\n", " structure = parser.get_structure('protein', cif_path)\n", " io = PDBIO()\n", " io.set_structure(structure)\n", " io.save(pdb_path)\n", " return pdb_path\n", "\n", "def fetch_pdb(pdb_id):\n", " pdb_path = fetch_structure(pdb_id)\n", " if not pdb_path:\n", " return None\n", " _, ext = os.path.splitext(pdb_path)\n", " if ext == '.cif':\n", " pdb_path = convert_cif_to_pdb(pdb_path)\n", " return pdb_path\n", "\n", "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n", " \"\"\"\n", " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n", " \"\"\"\n", " # Read the original PDB file\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', input_pdb)\n", " \n", " # Prepare a new structure with only the specified chain and selected residues\n", " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb\"\n", " \n", " # Create scores dictionary for easy lookup\n", " scores_dict = {resi: score for resi, score in residue_scores}\n", "\n", " # Create a custom Select class\n", " class ResidueSelector(Select):\n", " def __init__(self, chain_id, selected_residues, scores_dict):\n", " self.chain_id = chain_id\n", " self.selected_residues = selected_residues\n", " self.scores_dict = scores_dict\n", " \n", " def accept_chain(self, chain):\n", " return chain.id == self.chain_id\n", " \n", " def accept_residue(self, residue):\n", " return residue.id[1] in self.selected_residues\n", "\n", " def accept_atom(self, atom):\n", " if atom.parent.id[1] in self.scores_dict:\n", " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n", " return True\n", "\n", " # Prepare output PDB with selected chain and residues, modified B-factors\n", " io = PDBIO()\n", " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n", " \n", " io.set_structure(structure[0])\n", " io.save(output_pdb, selector)\n", " \n", " return output_pdb\n", "\n", "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n", " \"\"\"\n", " Calculate the geometric center of high-scoring residues\n", " \"\"\"\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', pdb_path)\n", " \n", " # Collect coordinates of CA atoms from high-scoring residues\n", " coords = []\n", " for model in structure:\n", " for chain in model:\n", " if chain.id == chain_id:\n", " for residue in chain:\n", " if residue.id[1] in high_score_residues:\n", " if 'CA' in residue: # Use alpha carbon as representative\n", " ca_atom = residue['CA']\n", " coords.append(ca_atom.coord)\n", " \n", " # Calculate geometric center\n", " if coords:\n", " center = np.mean(coords, axis=0)\n", " return center\n", " return None\n", "\n", "def process_pdb(pdb_id_or_file, segment):\n", " # Determine if input is a PDB ID or file path\n", " if pdb_id_or_file.endswith('.pdb'):\n", " pdb_path = pdb_id_or_file\n", " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n", " else:\n", " pdb_id = pdb_id_or_file\n", " pdb_path = fetch_pdb(pdb_id)\n", " \n", " if not pdb_path:\n", " return \"Failed to fetch PDB file\", None, None\n", " \n", " # Determine the file format and choose the appropriate parser\n", " _, ext = os.path.splitext(pdb_path)\n", " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n", " \n", " try:\n", " # Parse the structure file\n", " structure = parser.get_structure('protein', pdb_path)\n", " except Exception as e:\n", " return f\"Error parsing structure file: {e}\", None, None\n", " \n", " # Extract the specified chain\n", " try:\n", " chain = structure[0][segment]\n", " except KeyError:\n", " return \"Invalid Chain ID\", None, None\n", " \n", " protein_residues = [res for res in chain if is_aa(res)]\n", " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n", " sequence_id = [res.id[1] for res in protein_residues]\n", " \n", " scores = np.random.rand(len(sequence))\n", " normalized_scores = normalize_scores(scores)\n", " \n", " # Zip residues with scores to track the residue ID and score\n", " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n", "\n", " \n", " # Identify high scoring residues (> 0.5)\n", " high_score_residues = [resi for resi, score in residue_scores if score > 0.5]\n", " \n", " # Preparing the result: only print high scoring residues\n", " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n", " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n", " result_str += \"High-scoring Residues (Score > 0.5):\\n\"\n", " result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n", " result_str += \"\\n\".join([\n", " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n", " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n", " ])\n", "\n", " # Create chain-specific PDB with scores in B-factor\n", " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n", "\n", " # Molecule visualization with updated script with color mapping\n", " mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)\n", "\n", " # Improved PyMOL command suggestions\n", " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n", " pymol_commands = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n", " \n", " pymol_commands += f\"\"\"\n", "# PyMOL Visualization Commands\n", "load {os.path.abspath(pdb_path)}, protein\n", "hide everything, all\n", "show cartoon, chain {segment}\n", "color white, chain {segment}\n", "\"\"\"\n", " \n", " # Color specific residues\n", " for score_range, color in [\n", " (high_score_residues, \"red\")\n", " ]:\n", " if score_range:\n", " resi_list = '+'.join(map(str, score_range))\n", " pymol_commands += f\"\"\"\n", "select high_score_residues, resi {resi_list} and chain {segment}\n", "show sticks, high_score_residues\n", "color {color}, high_score_residues\n", "\"\"\"\n", " # Create prediction and scored PDB files\n", " prediction_file = f\"{pdb_id}_binding_site_residues.txt\"\n", " with open(prediction_file, \"w\") as f:\n", " f.write(result_str)\n", " \n", " return pymol_commands, mol_vis, [prediction_file,scored_pdb]\n", "\n", "def molecule(input_pdb, residue_scores=None, segment='A'):\n", " # More granular scoring for visualization\n", " mol = read_mol(input_pdb) # Read PDB file content\n", "\n", " # Prepare high-scoring residues script if scores are provided\n", " high_score_script = \"\"\n", " if residue_scores is not None:\n", " # Filter residues based on their scores\n", " class1_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.6]\n", " class2_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.7]\n", " class3_score_residues = [resi for resi, score in residue_scores if 0.7 < score <= 0.8]\n", " class4_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]\n", " class5_score_residues = [resi for resi, score in residue_scores if 0.9 < score <= 1.0]\n", " \n", " high_score_script = \"\"\"\n", " // Load the original model and apply white cartoon style\n", " let chainModel = viewer.addModel(pdb, \"pdb\");\n", " chainModel.setStyle({}, {});\n", " chainModel.setStyle(\n", " {\"chain\": \"%s\"}, \n", " {\"cartoon\": {\"color\": \"white\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class1Model = viewer.addModel(pdb, \"pdb\");\n", " class1Model.setStyle({}, {});\n", " class1Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"blue\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class2Model = viewer.addModel(pdb, \"pdb\");\n", " class2Model.setStyle({}, {});\n", " class2Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"lightblue\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class3Model = viewer.addModel(pdb, \"pdb\");\n", " class3Model.setStyle({}, {});\n", " class3Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"white\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class4Model = viewer.addModel(pdb, \"pdb\");\n", " class4Model.setStyle({}, {});\n", " class4Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"orange\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class5Model = viewer.addModel(pdb, \"pdb\");\n", " class5Model.setStyle({}, {});\n", " class5Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"red\"}}\n", " );\n", "\n", " \"\"\" % (\n", " segment,\n", " segment,\n", " \", \".join(str(resi) for resi in class1_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class2_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class3_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class4_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class5_score_residues)\n", " )\n", " \n", " # Generate the full HTML content\n", " html_content = f\"\"\"\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " \n", " \"\"\"\n", " \n", " # Return the HTML content within an iframe safely encoded for special characters\n", " return f''\n", "\n", "# Gradio UI\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"# Protein Binding Site Prediction\")\n", " \n", " with gr.Row():\n", " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n", " visualize_btn = gr.Button(\"Visualize Structure\")\n", "\n", " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n", " {\n", " \"model\": 0,\n", " \"style\": \"cartoon\",\n", " \"color\": \"whiteCarbon\",\n", " \"residue_range\": \"\",\n", " \"around\": 0,\n", " \"byres\": False,\n", " }\n", " ])\n", "\n", " with gr.Row():\n", " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n", " prediction_btn = gr.Button(\"Predict Binding Site\")\n", "\n", " molecule_output = gr.HTML(label=\"Protein Structure\")\n", " explanation_vis = gr.Markdown(\"\"\"\n", " Residues with a score > 0.5 are considered binding sites and represented as sticks with the score dependent colorcoding:\n", " - 0.5-0.6: blue \n", " - 0.6–0.7: light blue \n", " - 0.7–0.8: white\n", " - 0.8–0.9: orange\n", " - 0.9–1.0: red\n", " \"\"\")\n", " predictions_output = gr.Textbox(label=\"Visualize Prediction with PyMol\")\n", " gr.Markdown(\"### Download:\\n- List of predicted binding site residues\\n- PDB with score in beta factor column\")\n", " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n", " \n", " prediction_btn.click(\n", " process_pdb, \n", " inputs=[\n", " pdb_input, \n", " segment_input\n", " ], \n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", " visualize_btn.click(\n", " fetch_pdb, \n", " inputs=[pdb_input], \n", " outputs=molecule_output2\n", " )\n", "\n", " gr.Markdown(\"## Examples\")\n", " gr.Examples(\n", " examples=[\n", " [\"7RPZ\", \"A\"],\n", " [\"2IWI\", \"B\"],\n", " [\"2F6V\", \"A\"]\n", " ],\n", " inputs=[pdb_input, segment_input],\n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", "demo.launch(share=True)" ] }, { "cell_type": "code", "execution_count": 71, "id": "99d18e7c-3ec1-48f2-b368-958b66bb1782", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "* Running on local URL: http://127.0.0.1:7923\n", "* Running on public URL: https://ad5916147a5fd9c4b5.gradio.live\n", "\n", "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ ".cif\n", "./7RPZ.pdb\n", ".pdb\n", "/private/var/folders/tm/ym2tckv54b96ws82y3b7cqhh0000gn/T/gradio/6b7bd3b706f978096c02bacdbf7b38529f0a5233f7570f758063b6e78f62771d/2F6V.pdb\n" ] } ], "source": [ "from datetime import datetime\n", "import gradio as gr\n", "import requests\n", "from Bio.PDB import PDBParser, MMCIFParser, PDBIO\n", "from Bio.PDB.Polypeptide import is_aa\n", "from Bio.SeqUtils import seq1\n", "from Bio.PDB import Select\n", "from typing import Optional, Tuple\n", "import numpy as np\n", "import os\n", "from gradio_molecule3d import Molecule3D\n", "\n", "import re\n", "import pandas as pd\n", "import copy\n", "\n", "from scipy.special import expit\n", "\n", "def normalize_scores(scores):\n", " min_score = np.min(scores)\n", " max_score = np.max(scores)\n", " return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n", "\n", "def read_mol(pdb_path):\n", " \"\"\"Read PDB file and return its content as a string\"\"\"\n", " with open(pdb_path, 'r') as f:\n", " return f.read()\n", "\n", "def fetch_structure(pdb_id: str, output_dir: str = \".\") -> Optional[str]:\n", " \"\"\"\n", " Fetch the structure file for a given PDB ID. Prioritizes CIF files.\n", " If a structure file already exists locally, it uses that.\n", " \"\"\"\n", " file_path = download_structure(pdb_id, output_dir)\n", " if file_path:\n", " return file_path\n", " else:\n", " return None\n", "\n", "def download_structure(pdb_id: str, output_dir: str) -> Optional[str]:\n", " \"\"\"\n", " Attempt to download the structure file in CIF or PDB format.\n", " Returns the path to the downloaded file, or None if download fails.\n", " \"\"\"\n", " for ext in ['.cif', '.pdb']:\n", " file_path = os.path.join(output_dir, f\"{pdb_id}{ext}\")\n", " if os.path.exists(file_path):\n", " return file_path\n", " url = f\"https://files.rcsb.org/download/{pdb_id}{ext}\"\n", " try:\n", " response = requests.get(url, timeout=10)\n", " if response.status_code == 200:\n", " with open(file_path, 'wb') as f:\n", " f.write(response.content)\n", " return file_path\n", " except Exception as e:\n", " print(f\"Download error for {pdb_id}{ext}: {e}\")\n", " return None\n", "\n", "def convert_cif_to_pdb(cif_path: str, output_dir: str = \".\") -> str:\n", " \"\"\"\n", " Convert a CIF file to PDB format using BioPython and return the PDB file path.\n", " \"\"\"\n", " pdb_path = os.path.join(output_dir, os.path.basename(cif_path).replace('.cif', '.pdb'))\n", " parser = MMCIFParser(QUIET=True)\n", " structure = parser.get_structure('protein', cif_path)\n", " io = PDBIO()\n", " io.set_structure(structure)\n", " io.save(pdb_path)\n", " return pdb_path\n", "\n", "def fetch_pdb(pdb_id):\n", " pdb_path = fetch_structure(pdb_id)\n", " if not pdb_path:\n", " return None\n", " _, ext = os.path.splitext(pdb_path)\n", " if ext == '.cif':\n", " pdb_path = convert_cif_to_pdb(pdb_path)\n", " return pdb_path\n", "\n", "def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:\n", " \"\"\"\n", " Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores\n", " \"\"\"\n", " # Read the original PDB file\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', input_pdb)\n", " \n", " # Prepare a new structure with only the specified chain and selected residues\n", " output_pdb = f\"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb\"\n", " \n", " # Create scores dictionary for easy lookup\n", " scores_dict = {resi: score for resi, score in residue_scores}\n", "\n", " # Create a custom Select class\n", " class ResidueSelector(Select):\n", " def __init__(self, chain_id, selected_residues, scores_dict):\n", " self.chain_id = chain_id\n", " self.selected_residues = selected_residues\n", " self.scores_dict = scores_dict\n", " \n", " def accept_chain(self, chain):\n", " return chain.id == self.chain_id\n", " \n", " def accept_residue(self, residue):\n", " return residue.id[1] in self.selected_residues\n", "\n", " def accept_atom(self, atom):\n", " if atom.parent.id[1] in self.scores_dict:\n", " atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100\n", " return True\n", "\n", " # Prepare output PDB with selected chain and residues, modified B-factors\n", " io = PDBIO()\n", " selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)\n", " \n", " io.set_structure(structure[0])\n", " io.save(output_pdb, selector)\n", " \n", " return output_pdb\n", "\n", "def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_id: str):\n", " \"\"\"\n", " Calculate the geometric center of high-scoring residues\n", " \"\"\"\n", " parser = PDBParser(QUIET=True)\n", " structure = parser.get_structure('protein', pdb_path)\n", " \n", " # Collect coordinates of CA atoms from high-scoring residues\n", " coords = []\n", " for model in structure:\n", " for chain in model:\n", " if chain.id == chain_id:\n", " for residue in chain:\n", " if residue.id[1] in high_score_residues:\n", " if 'CA' in residue: # Use alpha carbon as representative\n", " ca_atom = residue['CA']\n", " coords.append(ca_atom.coord)\n", " \n", " # Calculate geometric center\n", " if coords:\n", " center = np.mean(coords, axis=0)\n", " return center\n", " return None\n", "\n", "def process_pdb(pdb_id_or_file, segment):\n", " # Determine if input is a PDB ID or file path\n", " if pdb_id_or_file.endswith('.pdb'):\n", " pdb_path = pdb_id_or_file\n", " pdb_id = os.path.splitext(os.path.basename(pdb_path))[0]\n", " else:\n", " pdb_id = pdb_id_or_file\n", " pdb_path = fetch_pdb(pdb_id)\n", " \n", " if not pdb_path:\n", " return \"Failed to fetch PDB file\", None, None\n", " \n", " # Determine the file format and choose the appropriate parser\n", " _, ext = os.path.splitext(pdb_path)\n", " parser = MMCIFParser(QUIET=True) if ext == '.cif' else PDBParser(QUIET=True)\n", " \n", " try:\n", " # Parse the structure file\n", " structure = parser.get_structure('protein', pdb_path)\n", " except Exception as e:\n", " return f\"Error parsing structure file: {e}\", None, None\n", " \n", " # Extract the specified chain\n", " try:\n", " chain = structure[0][segment]\n", " except KeyError:\n", " return \"Invalid Chain ID\", None, None\n", " \n", " protein_residues = [res for res in chain if is_aa(res)]\n", " sequence = \"\".join(seq1(res.resname) for res in protein_residues)\n", " sequence_id = [res.id[1] for res in protein_residues]\n", " \n", " scores = np.random.rand(len(sequence))\n", " normalized_scores = normalize_scores(scores)\n", " \n", " # Zip residues with scores to track the residue ID and score\n", " residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]\n", "\n", " \n", " # Identify high scoring residues (> 0.5)\n", " high_score_residues = [resi for resi, score in residue_scores if score > 0.5]\n", " \n", " # Preparing the result: only print high scoring residues\n", " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n", " result_str = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n", " result_str += \"High-scoring Residues (Score > 0.5):\\n\"\n", " result_str += \"Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\\n\\n\"\n", " result_str += \"\\n\".join([\n", " f\"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n", " for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues\n", " ])\n", "\n", " # Create chain-specific PDB with scores in B-factor\n", " scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)\n", "\n", " # Molecule visualization with updated script with color mapping\n", " mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)\n", "\n", " # Improved PyMOL command suggestions\n", " current_time = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n", " pymol_commands = f\"Prediction for PDB: {pdb_id}, Chain: {segment}\\nDate: {current_time}\\n\\n\"\n", " \n", " pymol_commands += f\"\"\"\n", "# PyMOL Visualization Commands\n", "load {os.path.abspath(pdb_path)}, protein\n", "hide everything, all\n", "show cartoon, chain {segment}\n", "color white, chain {segment}\n", "\"\"\"\n", " \n", " # Color specific residues\n", " for score_range, color in [\n", " (high_score_residues, \"red\")\n", " ]:\n", " if score_range:\n", " resi_list = '+'.join(map(str, score_range))\n", " pymol_commands += f\"\"\"\n", "select high_score_residues, resi {resi_list} and chain {segment}\n", "show sticks, high_score_residues\n", "color {color}, high_score_residues\n", "\"\"\"\n", " # Create prediction and scored PDB files\n", " prediction_file = f\"{pdb_id}_binding_site_residues.txt\"\n", " with open(prediction_file, \"w\") as f:\n", " f.write(result_str)\n", " \n", " return pymol_commands, mol_vis, [prediction_file,scored_pdb]\n", "\n", "def molecule(input_pdb, residue_scores=None, segment='A'):\n", " # More granular scoring for visualization\n", " mol = read_mol(input_pdb) # Read PDB file content\n", "\n", " # Prepare high-scoring residues script if scores are provided\n", " high_score_script = \"\"\n", " if residue_scores is not None:\n", " # Filter residues based on their scores\n", " class1_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.6]\n", " class2_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.7]\n", " class3_score_residues = [resi for resi, score in residue_scores if 0.7 < score <= 0.8]\n", " class4_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]\n", " class5_score_residues = [resi for resi, score in residue_scores if 0.9 < score <= 1.0]\n", " \n", " high_score_script = \"\"\"\n", " // Load the original model and apply white cartoon style\n", " let chainModel = viewer.addModel(pdb, \"pdb\");\n", " chainModel.setStyle({}, {});\n", " chainModel.setStyle(\n", " {\"chain\": \"%s\"}, \n", " {\"cartoon\": {\"color\": \"white\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class1Model = viewer.addModel(pdb, \"pdb\");\n", " class1Model.setStyle({}, {});\n", " class1Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"blue\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class2Model = viewer.addModel(pdb, \"pdb\");\n", " class2Model.setStyle({}, {});\n", " class2Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"lightblue\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class3Model = viewer.addModel(pdb, \"pdb\");\n", " class3Model.setStyle({}, {});\n", " class3Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"white\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class4Model = viewer.addModel(pdb, \"pdb\");\n", " class4Model.setStyle({}, {});\n", " class4Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"orange\"}}\n", " );\n", "\n", " // Create a new model for high-scoring residues and apply red sticks style\n", " let class5Model = viewer.addModel(pdb, \"pdb\");\n", " class5Model.setStyle({}, {});\n", " class5Model.setStyle(\n", " {\"chain\": \"%s\", \"resi\": [%s]}, \n", " {\"stick\": {\"color\": \"red\"}}\n", " );\n", "\n", " \"\"\" % (\n", " segment,\n", " segment,\n", " \", \".join(str(resi) for resi in class1_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class2_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class3_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class4_score_residues),\n", " segment,\n", " \", \".join(str(resi) for resi in class5_score_residues)\n", " )\n", " \n", " # Generate the full HTML content\n", " html_content = f\"\"\"\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\n", " \n", " \n", " \n", " \"\"\"\n", " \n", " # Return the HTML content within an iframe safely encoded for special characters\n", " return f''\n", "\n", "# Gradio UI\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"# Protein Binding Site Prediction\")\n", " \n", " # Mode selection\n", " mode = gr.Radio(\n", " choices=[\"PDB ID\", \"Upload File\"],\n", " value=\"PDB ID\",\n", " label=\"Input Mode\",\n", " info=\"Choose whether to input a PDB ID or upload a PDB/CIF file.\"\n", " )\n", "\n", " # Input components based on mode\n", " pdb_input = gr.Textbox(value=\"4BDU\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n", " pdb_file = gr.File(label=\"Upload PDB/CIF File\", visible=False)\n", " visualize_btn = gr.Button(\"Visualize Structure\")\n", "\n", " molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=[\n", " {\n", " \"model\": 0,\n", " \"style\": \"cartoon\",\n", " \"color\": \"whiteCarbon\",\n", " \"residue_range\": \"\",\n", " \"around\": 0,\n", " \"byres\": False,\n", " }\n", " ])\n", "\n", " with gr.Row():\n", " segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n", " prediction_btn = gr.Button(\"Predict Binding Site\")\n", "\n", " molecule_output = gr.HTML(label=\"Protein Structure\")\n", " explanation_vis = gr.Markdown(\"\"\"\n", " Residues with a score > 0.5 are considered binding sites and represented as sticks with the score dependent colorcoding:\n", " - 0.5-0.6: blue \n", " - 0.6–0.7: light blue \n", " - 0.7–0.8: white\n", " - 0.8–0.9: orange\n", " - 0.9–1.0: red\n", " \"\"\")\n", " predictions_output = gr.Textbox(label=\"Visualize Prediction with PyMol\")\n", " gr.Markdown(\"### Download:\\n- List of predicted binding site residues\\n- PDB with score in beta factor column\")\n", " download_output = gr.File(label=\"Download Files\", file_count=\"multiple\")\n", " \n", " def process_interface(mode, pdb_id, pdb_file, chain_id):\n", " if mode == \"PDB ID\":\n", " return process_pdb(pdb_id, chain_id)\n", " elif mode == \"Upload File\":\n", " _, ext = os.path.splitext(pdb_file.name)\n", " file_path = os.path.join('./', f\"{_}{ext}\")\n", " if ext == '.cif':\n", " pdb_path = convert_cif_to_pdb(file_path)\n", " else:\n", " pdb_path= file_path\n", " return process_pdb(pdb_path, chain_id)\n", " else:\n", " return \"Error: Invalid mode selected\", None, None\n", "\n", " def fetch_interface(mode, pdb_id, pdb_file):\n", " if mode == \"PDB ID\":\n", " return fetch_pdb(pdb_id)\n", " elif mode == \"Upload File\":\n", " _, ext = os.path.splitext(pdb_file.name)\n", " file_path = os.path.join('./', f\"{_}{ext}\")\n", " #print(ext)\n", " if ext == '.cif':\n", " pdb_path = convert_cif_to_pdb(file_path)\n", " else:\n", " pdb_path= file_path\n", " #print(pdb_path)\n", " return pdb_path\n", " else:\n", " return \"Error: Invalid mode selected\"\n", "\n", " def toggle_mode(selected_mode):\n", " if selected_mode == \"PDB ID\":\n", " return gr.update(visible=True), gr.update(visible=False)\n", " else:\n", " return gr.update(visible=False), gr.update(visible=True)\n", "\n", " mode.change(\n", " toggle_mode,\n", " inputs=[mode],\n", " outputs=[pdb_input, pdb_file]\n", " )\n", "\n", " prediction_btn.click(\n", " process_interface, \n", " inputs=[mode, pdb_input, pdb_file, segment_input], \n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", " visualize_btn.click(\n", " fetch_interface, \n", " inputs=[mode, pdb_input, pdb_file], \n", " outputs=molecule_output2\n", " )\n", "\n", " gr.Markdown(\"## Examples\")\n", " gr.Examples(\n", " examples=[\n", " [\"7RPZ\", \"A\"],\n", " [\"2IWI\", \"B\"],\n", " [\"2F6V\", \"A\"]\n", " ],\n", " inputs=[pdb_input, segment_input],\n", " outputs=[predictions_output, molecule_output, download_output]\n", " )\n", "\n", "demo.launch(share=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "9496cf4f-9e5f-4b0b-bb0d-7aebbb748ae6", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python (LLM)", "language": "python", "name": "llm" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }