Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,13 @@ from cerebras.cloud.sdk import Cerebras
|
|
6 |
from groq import Groq
|
7 |
import requests
|
8 |
from bs4 import BeautifulSoup
|
9 |
-
from urllib.parse import
|
10 |
import re
|
11 |
import json
|
12 |
-
import numpy as np
|
13 |
-
from datetime import datetime
|
14 |
import logging
|
15 |
import aiohttp
|
16 |
|
17 |
-
#
|
18 |
CEREBRAS_API_KEY = os.getenv("CEREBRAS_API_KEY")
|
19 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
20 |
|
@@ -31,6 +29,7 @@ logging.basicConfig(
|
|
31 |
filename='agent.log'
|
32 |
)
|
33 |
|
|
|
34 |
class EnhancedToolkit:
|
35 |
@staticmethod
|
36 |
async def fetch_webpage_async(url, timeout=10):
|
@@ -41,18 +40,16 @@ class EnhancedToolkit:
|
|
41 |
return await response.text()
|
42 |
return f"Error: HTTP {response.status}"
|
43 |
except Exception as e:
|
|
|
44 |
return f"Error fetching URL: {str(e)}"
|
45 |
|
46 |
@staticmethod
|
47 |
def extract_text_from_html(html):
|
48 |
soup = BeautifulSoup(html, 'html.parser')
|
49 |
-
# Remove script and style elements
|
50 |
for script in soup(["script", "style"]):
|
51 |
script.decompose()
|
52 |
text = soup.get_text(separator=' ', strip=True)
|
53 |
-
|
54 |
-
text = ' '.join(text.split())
|
55 |
-
return text
|
56 |
|
57 |
@staticmethod
|
58 |
def validate_url(url):
|
@@ -64,27 +61,17 @@ class EnhancedToolkit:
|
|
64 |
|
65 |
@staticmethod
|
66 |
def summarize_text(text, max_length=500):
|
67 |
-
"""Simple text summarization by extracting key sentences"""
|
68 |
sentences = text.split('. ')
|
69 |
if len(sentences) <= 3:
|
70 |
return text
|
71 |
-
|
72 |
-
# Simple importance scoring based on sentence length and position
|
73 |
-
scores = []
|
74 |
-
for i, sentence in enumerate(sentences):
|
75 |
-
score = len(sentence.split()) * (1.0 / (i + 1)) # Length and position weight
|
76 |
-
scores.append((score, sentence))
|
77 |
-
|
78 |
-
# Get top sentences
|
79 |
scores.sort(reverse=True)
|
80 |
-
|
81 |
-
return summary
|
82 |
|
83 |
@staticmethod
|
84 |
def analyze_sentiment(text):
|
85 |
-
|
86 |
-
|
87 |
-
negative_words = set(['bad', 'poor', 'negative', 'terrible', 'awful', 'horrible'])
|
88 |
|
89 |
words = text.lower().split()
|
90 |
pos_count = sum(1 for word in words if word in positive_words)
|
@@ -116,102 +103,48 @@ class AgentCore:
|
|
116 |
async def execute_tool(self, action, parameters):
|
117 |
if self.tool_execution_count >= self.max_tools_per_turn:
|
118 |
return "Tool usage limit reached for this turn."
|
119 |
-
|
120 |
self.tool_execution_count += 1
|
121 |
|
122 |
if action == "scrape":
|
123 |
url = parameters.get("url")
|
124 |
if not self.toolkit.validate_url(url):
|
125 |
return "Invalid URL provided."
|
126 |
-
|
127 |
html_content = await self.toolkit.fetch_webpage_async(url)
|
128 |
if html_content.startswith("Error"):
|
129 |
return html_content
|
130 |
-
|
131 |
text_content = self.toolkit.extract_text_from_html(html_content)
|
132 |
summary = self.toolkit.summarize_text(text_content)
|
133 |
sentiment = self.toolkit.analyze_sentiment(text_content)
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
'sentiment': sentiment,
|
138 |
-
'full_text': text_content[:1000] + '...' if len(text_content) > 1000 else text_content
|
139 |
-
}
|
140 |
-
|
141 |
-
elif action == "search":
|
142 |
-
query = parameters.get("query")
|
143 |
-
return f"Simulated search for: {query}\nThis would connect to a search API in production."
|
144 |
-
|
145 |
-
elif action == "analyze":
|
146 |
text = parameters.get("text")
|
147 |
if not text:
|
148 |
return "No text provided for analysis"
|
149 |
-
|
150 |
-
|
151 |
-
'sentiment': self.toolkit.analyze_sentiment(text),
|
152 |
-
'summary': self.toolkit.summarize_text(text)
|
153 |
-
}
|
154 |
-
|
155 |
return f"Unknown tool: {action}"
|
156 |
|
|
|
157 |
async def chat_with_agent(user_input, chat_history, agent_core):
|
158 |
start_time = time.time()
|
159 |
try:
|
160 |
# Reset tool counter for new turn
|
161 |
agent_core.tool_execution_count = 0
|
|
|
|
|
|
|
162 |
|
163 |
-
# Prepare context-aware prompt
|
164 |
-
system_prompt = """You are OmniAgent, a highly advanced AI assistant with multiple capabilities:
|
165 |
-
|
166 |
-
Core Abilities:
|
167 |
-
1. Task Understanding & Planning
|
168 |
-
2. Web Information Retrieval & Analysis
|
169 |
-
3. Content Summarization & Sentiment Analysis
|
170 |
-
4. Context-Aware Problem Solving
|
171 |
-
5. Creative Solution Generation
|
172 |
-
|
173 |
-
Available Tools:
|
174 |
-
- scrape: Extract and analyze web content
|
175 |
-
- search: Find relevant information
|
176 |
-
- analyze: Process and understand text
|
177 |
-
|
178 |
-
Use format:
|
179 |
-
Action: take_action
|
180 |
-
Parameters: {"action": "tool_name", "parameters": {...}}
|
181 |
-
|
182 |
-
Approach each task with:
|
183 |
-
1. Initial analysis
|
184 |
-
2. Step-by-step planning
|
185 |
-
3. Tool utilization when needed
|
186 |
-
4. Result synthesis
|
187 |
-
5. Clear explanation
|
188 |
-
|
189 |
-
Remember to maintain a helpful, professional, yet friendly tone."""
|
190 |
-
|
191 |
-
messages = [
|
192 |
-
{"role": "system", "content": system_prompt},
|
193 |
-
{"role": "user", "content": user_input}
|
194 |
-
]
|
195 |
-
|
196 |
-
# Use both models for different aspects of processing
|
197 |
async def get_cerebras_response():
|
198 |
-
response = cerebras_client.completions.create(
|
199 |
-
prompt=f"{system_prompt}\n\nUser: {user_input}",
|
200 |
-
max_tokens=1000,
|
201 |
-
temperature=0.7
|
202 |
-
)
|
203 |
return response.text
|
204 |
|
205 |
async def get_groq_response():
|
206 |
-
completion = groq_client.chat.completions.create(
|
207 |
-
messages=messages,
|
208 |
-
temperature=0.7,
|
209 |
-
max_tokens=2048,
|
210 |
-
stream=True
|
211 |
-
)
|
212 |
return completion
|
213 |
-
|
214 |
-
#
|
215 |
cerebras_future = asyncio.create_task(get_cerebras_response())
|
216 |
groq_stream = await get_groq_response()
|
217 |
|
@@ -219,12 +152,10 @@ async def chat_with_agent(user_input, chat_history, agent_core):
|
|
219 |
response = ""
|
220 |
chain_of_thought = ""
|
221 |
|
222 |
-
# Process Groq stream
|
223 |
for chunk in groq_stream:
|
224 |
if chunk.choices[0].delta and chunk.choices[0].delta.content:
|
225 |
content = chunk.choices[0].delta.content
|
226 |
response += content
|
227 |
-
|
228 |
if "Chain of Thought:" in content:
|
229 |
chain_of_thought += content.split("Chain of Thought:", 1)[-1]
|
230 |
|
@@ -235,18 +166,13 @@ async def chat_with_agent(user_input, chat_history, agent_core):
|
|
235 |
action = action_match.group(1)
|
236 |
try:
|
237 |
parameters = json.loads(action_match.group(2))
|
238 |
-
tool_result = await agent_core.execute_tool(
|
239 |
-
parameters.get("action"),
|
240 |
-
parameters.get("parameters", {})
|
241 |
-
)
|
242 |
response += f"\nTool Result: {json.dumps(tool_result, indent=2)}\n"
|
243 |
except json.JSONDecodeError:
|
244 |
response += "\nError: Invalid tool parameters\n"
|
245 |
|
246 |
-
#
|
247 |
cerebras_response = await cerebras_future
|
248 |
-
|
249 |
-
# Combine insights from both models
|
250 |
final_response = f"{response}\n\nAdditional Insights:\n{cerebras_response}"
|
251 |
|
252 |
# Update context
|
@@ -265,48 +191,28 @@ def create_interface():
|
|
265 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
266 |
agent_core = AgentCore()
|
267 |
|
268 |
-
gr.Markdown("""# 🌟 OmniAgent: Advanced AI Assistant
|
269 |
-
Powered by dual AI models for enhanced capabilities and deeper understanding.""")
|
270 |
|
271 |
with gr.Row():
|
272 |
with gr.Column(scale=6):
|
273 |
-
chat_history = gr.Chatbot(
|
274 |
-
label="Interaction History",
|
275 |
-
height=600,
|
276 |
-
show_label=True
|
277 |
-
)
|
278 |
with gr.Column(scale=2):
|
279 |
with gr.Accordion("Performance Metrics", open=True):
|
280 |
compute_time = gr.Textbox(label="Processing Time", interactive=False)
|
281 |
token_usage_display = gr.Textbox(label="Resource Usage", interactive=False)
|
282 |
with gr.Accordion("Agent Insights", open=True):
|
283 |
-
chain_of_thought_display = gr.Textbox(
|
284 |
-
label="Reasoning Process",
|
285 |
-
interactive=False,
|
286 |
-
lines=10
|
287 |
-
)
|
288 |
|
289 |
-
user_input = gr.Textbox(
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
)
|
294 |
-
|
295 |
-
with gr.Row():
|
296 |
-
send_button = gr.Button("Send", variant="primary")
|
297 |
-
clear_button = gr.Button("Clear History", variant="secondary")
|
298 |
-
export_button = gr.Button("Export Chat", variant="secondary")
|
299 |
|
300 |
async def handle_chat(chat_history, user_input):
|
301 |
if not user_input.strip():
|
302 |
return chat_history, "", "", ""
|
303 |
|
304 |
-
ai_response, chain_of_thought, compute_info, token_usage = await chat_with_agent(
|
305 |
-
user_input,
|
306 |
-
chat_history,
|
307 |
-
agent_core
|
308 |
-
)
|
309 |
-
|
310 |
chat_history.append((user_input, ai_response))
|
311 |
return chat_history, chain_of_thought, compute_info, token_usage
|
312 |
|
@@ -319,35 +225,16 @@ def create_interface():
|
|
319 |
return "No chat history to export.", ""
|
320 |
|
321 |
filename = f"omnigent_chat_{int(time.time())}.txt"
|
322 |
-
chat_text = "\n".join([
|
323 |
-
f"User: {item[0]}\nAI: {item[1]}\n"
|
324 |
-
for item in chat_history
|
325 |
-
])
|
326 |
-
|
327 |
with open(filename, "w") as file:
|
328 |
file.write(chat_text)
|
329 |
return f"Chat exported to {filename}", ""
|
330 |
|
331 |
# Event handlers
|
332 |
-
send_button.click(
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
)
|
337 |
-
clear_button.click(
|
338 |
-
clear_chat,
|
339 |
-
outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]
|
340 |
-
)
|
341 |
-
export_button.click(
|
342 |
-
export_chat,
|
343 |
-
inputs=[chat_history],
|
344 |
-
outputs=[compute_time, chain_of_thought_display]
|
345 |
-
)
|
346 |
-
user_input.submit(
|
347 |
-
handle_chat,
|
348 |
-
inputs=[chat_history, user_input],
|
349 |
-
outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display]
|
350 |
-
)
|
351 |
|
352 |
gr.Markdown("""### 🚀 Advanced Capabilities:
|
353 |
- Dual AI Model Processing
|
@@ -364,4 +251,4 @@ def create_interface():
|
|
364 |
|
365 |
if __name__ == "__main__":
|
366 |
demo = create_interface()
|
367 |
-
demo.launch(share=True)
|
|
|
6 |
from groq import Groq
|
7 |
import requests
|
8 |
from bs4 import BeautifulSoup
|
9 |
+
from urllib.parse import urlparse
|
10 |
import re
|
11 |
import json
|
|
|
|
|
12 |
import logging
|
13 |
import aiohttp
|
14 |
|
15 |
+
# API Setup
|
16 |
CEREBRAS_API_KEY = os.getenv("CEREBRAS_API_KEY")
|
17 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
18 |
|
|
|
29 |
filename='agent.log'
|
30 |
)
|
31 |
|
32 |
+
# Helper Functions
|
33 |
class EnhancedToolkit:
|
34 |
@staticmethod
|
35 |
async def fetch_webpage_async(url, timeout=10):
|
|
|
40 |
return await response.text()
|
41 |
return f"Error: HTTP {response.status}"
|
42 |
except Exception as e:
|
43 |
+
logging.error(f"Error fetching URL: {str(e)}")
|
44 |
return f"Error fetching URL: {str(e)}"
|
45 |
|
46 |
@staticmethod
|
47 |
def extract_text_from_html(html):
|
48 |
soup = BeautifulSoup(html, 'html.parser')
|
|
|
49 |
for script in soup(["script", "style"]):
|
50 |
script.decompose()
|
51 |
text = soup.get_text(separator=' ', strip=True)
|
52 |
+
return ' '.join(text.split())
|
|
|
|
|
53 |
|
54 |
@staticmethod
|
55 |
def validate_url(url):
|
|
|
61 |
|
62 |
@staticmethod
|
63 |
def summarize_text(text, max_length=500):
|
|
|
64 |
sentences = text.split('. ')
|
65 |
if len(sentences) <= 3:
|
66 |
return text
|
67 |
+
scores = [(len(sentence.split()) * (1.0 / (i + 1)), sentence) for i, sentence in enumerate(sentences)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
scores.sort(reverse=True)
|
69 |
+
return '. '.join([sentence for _, sentence in scores[:3]]) + '.'
|
|
|
70 |
|
71 |
@staticmethod
|
72 |
def analyze_sentiment(text):
|
73 |
+
positive_words = set(['good', 'great', 'excellent', 'positive', 'amazing'])
|
74 |
+
negative_words = set(['bad', 'poor', 'negative', 'terrible', 'horrible'])
|
|
|
75 |
|
76 |
words = text.lower().split()
|
77 |
pos_count = sum(1 for word in words if word in positive_words)
|
|
|
103 |
async def execute_tool(self, action, parameters):
|
104 |
if self.tool_execution_count >= self.max_tools_per_turn:
|
105 |
return "Tool usage limit reached for this turn."
|
106 |
+
|
107 |
self.tool_execution_count += 1
|
108 |
|
109 |
if action == "scrape":
|
110 |
url = parameters.get("url")
|
111 |
if not self.toolkit.validate_url(url):
|
112 |
return "Invalid URL provided."
|
|
|
113 |
html_content = await self.toolkit.fetch_webpage_async(url)
|
114 |
if html_content.startswith("Error"):
|
115 |
return html_content
|
|
|
116 |
text_content = self.toolkit.extract_text_from_html(html_content)
|
117 |
summary = self.toolkit.summarize_text(text_content)
|
118 |
sentiment = self.toolkit.analyze_sentiment(text_content)
|
119 |
+
return {'summary': summary, 'sentiment': sentiment, 'full_text': text_content[:1000] + '...' if len(text_content) > 1000 else text_content}
|
120 |
+
|
121 |
+
if action == "analyze":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
text = parameters.get("text")
|
123 |
if not text:
|
124 |
return "No text provided for analysis"
|
125 |
+
return {'sentiment': self.toolkit.analyze_sentiment(text), 'summary': self.toolkit.summarize_text(text)}
|
126 |
+
|
|
|
|
|
|
|
|
|
127 |
return f"Unknown tool: {action}"
|
128 |
|
129 |
+
# Chat Interaction
|
130 |
async def chat_with_agent(user_input, chat_history, agent_core):
|
131 |
start_time = time.time()
|
132 |
try:
|
133 |
# Reset tool counter for new turn
|
134 |
agent_core.tool_execution_count = 0
|
135 |
+
system_prompt = """You are OmniAgent, a highly advanced AI assistant with multiple capabilities."""
|
136 |
+
|
137 |
+
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_input}]
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
async def get_cerebras_response():
|
140 |
+
response = cerebras_client.completions.create(prompt=f"{system_prompt}\n\nUser: {user_input}", max_tokens=1000, temperature=0.7)
|
|
|
|
|
|
|
|
|
141 |
return response.text
|
142 |
|
143 |
async def get_groq_response():
|
144 |
+
completion = groq_client.chat.completions.create(messages=messages, temperature=0.7, max_tokens=2048, stream=True)
|
|
|
|
|
|
|
|
|
|
|
145 |
return completion
|
146 |
+
|
147 |
+
# Parallel AI Responses
|
148 |
cerebras_future = asyncio.create_task(get_cerebras_response())
|
149 |
groq_stream = await get_groq_response()
|
150 |
|
|
|
152 |
response = ""
|
153 |
chain_of_thought = ""
|
154 |
|
|
|
155 |
for chunk in groq_stream:
|
156 |
if chunk.choices[0].delta and chunk.choices[0].delta.content:
|
157 |
content = chunk.choices[0].delta.content
|
158 |
response += content
|
|
|
159 |
if "Chain of Thought:" in content:
|
160 |
chain_of_thought += content.split("Chain of Thought:", 1)[-1]
|
161 |
|
|
|
166 |
action = action_match.group(1)
|
167 |
try:
|
168 |
parameters = json.loads(action_match.group(2))
|
169 |
+
tool_result = await agent_core.execute_tool(parameters.get("action"), parameters.get("parameters", {}))
|
|
|
|
|
|
|
170 |
response += f"\nTool Result: {json.dumps(tool_result, indent=2)}\n"
|
171 |
except json.JSONDecodeError:
|
172 |
response += "\nError: Invalid tool parameters\n"
|
173 |
|
174 |
+
# Get Cerebras response and combine
|
175 |
cerebras_response = await cerebras_future
|
|
|
|
|
176 |
final_response = f"{response}\n\nAdditional Insights:\n{cerebras_response}"
|
177 |
|
178 |
# Update context
|
|
|
191 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
192 |
agent_core = AgentCore()
|
193 |
|
194 |
+
gr.Markdown("""# 🌟 OmniAgent: Advanced AI Assistant""")
|
|
|
195 |
|
196 |
with gr.Row():
|
197 |
with gr.Column(scale=6):
|
198 |
+
chat_history = gr.Chatbot(label="Interaction History", height=600, show_label=True)
|
|
|
|
|
|
|
|
|
199 |
with gr.Column(scale=2):
|
200 |
with gr.Accordion("Performance Metrics", open=True):
|
201 |
compute_time = gr.Textbox(label="Processing Time", interactive=False)
|
202 |
token_usage_display = gr.Textbox(label="Resource Usage", interactive=False)
|
203 |
with gr.Accordion("Agent Insights", open=True):
|
204 |
+
chain_of_thought_display = gr.Textbox(label="Reasoning Process", interactive=False, lines=10)
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
user_input = gr.Textbox(label="Your Request", placeholder="How can I assist you today?", lines=3)
|
207 |
+
send_button = gr.Button("Send", variant="primary")
|
208 |
+
clear_button = gr.Button("Clear History", variant="secondary")
|
209 |
+
export_button = gr.Button("Export Chat", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
async def handle_chat(chat_history, user_input):
|
212 |
if not user_input.strip():
|
213 |
return chat_history, "", "", ""
|
214 |
|
215 |
+
ai_response, chain_of_thought, compute_info, token_usage = await chat_with_agent(user_input, chat_history, agent_core)
|
|
|
|
|
|
|
|
|
|
|
216 |
chat_history.append((user_input, ai_response))
|
217 |
return chat_history, chain_of_thought, compute_info, token_usage
|
218 |
|
|
|
225 |
return "No chat history to export.", ""
|
226 |
|
227 |
filename = f"omnigent_chat_{int(time.time())}.txt"
|
228 |
+
chat_text = "\n".join([f"User: {item[0]}\nAI: {item[1]}\n" for item in chat_history])
|
|
|
|
|
|
|
|
|
229 |
with open(filename, "w") as file:
|
230 |
file.write(chat_text)
|
231 |
return f"Chat exported to {filename}", ""
|
232 |
|
233 |
# Event handlers
|
234 |
+
send_button.click(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
|
235 |
+
clear_button.click(clear_chat, outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
|
236 |
+
export_button.click(export_chat, inputs=[chat_history], outputs=[compute_time, chain_of_thought_display])
|
237 |
+
user_input.submit(handle_chat, inputs=[chat_history, user_input], outputs=[chat_history, chain_of_thought_display, compute_time, token_usage_display])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
gr.Markdown("""### 🚀 Advanced Capabilities:
|
240 |
- Dual AI Model Processing
|
|
|
251 |
|
252 |
if __name__ == "__main__":
|
253 |
demo = create_interface()
|
254 |
+
demo.launch(share=True)
|