Threatthriver commited on
Commit
8bb6b63
·
verified ·
1 Parent(s): 9d3ee05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -63
app.py CHANGED
@@ -1,64 +1,63 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import os
3
+ import time
4
+ from cerebras.cloud.sdk import Cerebras
5
+
6
+ # Set up the Cerebras client
7
+ client = Cerebras(api_key=os.getenv("CEREBRAS_API_KEY"))
8
+
9
+ def chat_with_cerebras(user_input):
10
+ """
11
+ Handles interaction with the Cerebras model.
12
+ Sends user input and returns the model's response along with compute time.
13
+ """
14
+ # Start compute time measurement
15
+ start_time = time.time()
16
+
17
+ try:
18
+ # Create a chat stream with Cerebras
19
+ stream = client.chat.completions.create(
20
+ messages=[
21
+ {"role": "system", "content": "You are a helpful assistant."},
22
+ {"role": "user", "content": user_input}
23
+ ],
24
+ model="llama-3.3-70b",
25
+ stream=True,
26
+ max_completion_tokens=1024,
27
+ temperature=0.2,
28
+ top_p=1
29
+ )
30
+
31
+ # Collect response from the stream
32
+ response = ""
33
+ for chunk in stream:
34
+ response += chunk.choices[0].delta.content or ""
35
+
36
+ # End compute time measurement
37
+ compute_time = time.time() - start_time
38
+
39
+ return response, f"Compute Time: {compute_time:.2f} seconds"
40
+
41
+ except Exception as e:
42
+ return "Error: Unable to process your request.", str(e)
43
+
44
+ # Gradio interface
45
+ def gradio_ui():
46
+ with gr.Blocks() as demo:
47
+ gr.Markdown("""# Cerebras AI Chatbot\nChat with a state-of-the-art AI model.""")
48
+
49
+ with gr.Row():
50
+ user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...")
51
+ response = gr.Textbox(label="AI Response", interactive=False)
52
+ compute_time = gr.Textbox(label="Compute Time", interactive=False)
53
+
54
+ submit_button = gr.Button("Submit")
55
+
56
+ # Define interaction logic
57
+ submit_button.click(chat_with_cerebras, inputs=user_input, outputs=[response, compute_time])
58
+
59
+ return demo
60
+
61
+ # Run the Gradio app
62
+ demo = gradio_ui()
63
+ demo.launch()