File size: 14,965 Bytes
b7eedf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
import torch
import lietorch
import numpy as np

import matplotlib.pyplot as plt
from lietorch import SE3
from modules.corr import CorrBlock, AltCorrBlock
import geom.projective_ops as pops
from glob import glob

class FactorGraph:
    def __init__(self, video, update_op, device="cuda:0", corr_impl="volume", max_factors=-1, upsample=False):
        self.video = video
        self.update_op = update_op
        self.device = device
        self.max_factors = max_factors
        self.corr_impl = corr_impl
        self.upsample = upsample

        # operator at 1/8 resolution
        self.ht = ht = video.ht // 8
        self.wd = wd = video.wd // 8

        self.coords0 = pops.coords_grid(ht, wd, device=device)
        self.ii = torch.as_tensor([], dtype=torch.long, device=device)
        self.jj = torch.as_tensor([], dtype=torch.long, device=device)
        self.age = torch.as_tensor([], dtype=torch.long, device=device)

        self.corr, self.net, self.inp = None, None, None
        self.damping = 1e-6 * torch.ones_like(self.video.disps)

        self.target = torch.zeros([1, 0, ht, wd, 2], device=device, dtype=torch.float)
        self.weight = torch.zeros([1, 0, ht, wd, 2], device=device, dtype=torch.float)

        # inactive factors
        self.ii_inac = torch.as_tensor([], dtype=torch.long, device=device)
        self.jj_inac = torch.as_tensor([], dtype=torch.long, device=device)
        self.ii_bad = torch.as_tensor([], dtype=torch.long, device=device)
        self.jj_bad = torch.as_tensor([], dtype=torch.long, device=device)

        self.target_inac = torch.zeros([1, 0, ht, wd, 2], device=device, dtype=torch.float)
        self.weight_inac = torch.zeros([1, 0, ht, wd, 2], device=device, dtype=torch.float)

    def __filter_repeated_edges(self, ii, jj):
        """ remove duplicate edges """

        keep = torch.zeros(ii.shape[0], dtype=torch.bool, device=ii.device)
        eset = set(
            [(i.item(), j.item()) for i, j in zip(self.ii, self.jj)] +
            [(i.item(), j.item()) for i, j in zip(self.ii_inac, self.jj_inac)])

        for k, (i, j) in enumerate(zip(ii, jj)):
            keep[k] = (i.item(), j.item()) not in eset

        return ii[keep], jj[keep]

    def print_edges(self):
        ii = self.ii.cpu().numpy()
        jj = self.jj.cpu().numpy()

        ix = np.argsort(ii)
        ii = ii[ix]
        jj = jj[ix]

        w = torch.mean(self.weight, dim=[0,2,3,4]).cpu().numpy()
        w = w[ix]
        for e in zip(ii, jj, w):
            print(e)
        print()

    def filter_edges(self):
        """ remove bad edges """
        conf = torch.mean(self.weight, dim=[0,2,3,4])
        mask = (torch.abs(self.ii-self.jj) > 2) & (conf < 0.001)

        self.ii_bad = torch.cat([self.ii_bad, self.ii[mask]])
        self.jj_bad = torch.cat([self.jj_bad, self.jj[mask]])
        self.rm_factors(mask, store=False)

    def clear_edges(self):
        self.rm_factors(self.ii >= 0)
        self.net = None
        self.inp = None

    @torch.cuda.amp.autocast(enabled=True)
    def add_factors(self, ii, jj, remove=False):
        """ add edges to factor graph """

        if not isinstance(ii, torch.Tensor):
            ii = torch.as_tensor(ii, dtype=torch.long, device=self.device)

        if not isinstance(jj, torch.Tensor):
            jj = torch.as_tensor(jj, dtype=torch.long, device=self.device)

        # remove duplicate edges
        ii, jj = self.__filter_repeated_edges(ii, jj)


        if ii.shape[0] == 0:
            return

        # place limit on number of factors
        if self.max_factors > 0 and self.ii.shape[0] + ii.shape[0] > self.max_factors \
                and self.corr is not None and remove:
            
            ix = torch.arange(len(self.age))[torch.argsort(self.age).cpu()]
            self.rm_factors(ix >= self.max_factors - ii.shape[0], store=True)

        net = self.video.nets[ii].to(self.device).unsqueeze(0)

        # correlation volume for new edges
        if self.corr_impl == "volume":
            c = (ii == jj).long()
            fmap1 = self.video.fmaps[ii,0].to(self.device).unsqueeze(0)
            fmap2 = self.video.fmaps[jj,c].to(self.device).unsqueeze(0)
            corr = CorrBlock(fmap1, fmap2)
            self.corr = corr if self.corr is None else self.corr.cat(corr)

            inp = self.video.inps[ii].to(self.device).unsqueeze(0)
            self.inp = inp if self.inp is None else torch.cat([self.inp, inp], 1)

        with torch.cuda.amp.autocast(enabled=False):
            target, _ = self.video.reproject(ii, jj)
            weight = torch.zeros_like(target)

        self.ii = torch.cat([self.ii, ii], 0)
        self.jj = torch.cat([self.jj, jj], 0)
        self.age = torch.cat([self.age, torch.zeros_like(ii)], 0)

        # reprojection factors
        self.net = net if self.net is None else torch.cat([self.net, net], 1)

        self.target = torch.cat([self.target, target], 1)
        self.weight = torch.cat([self.weight, weight], 1)

    @torch.cuda.amp.autocast(enabled=True)
    def rm_factors(self, mask, store=False):
        """ drop edges from factor graph """

        # store estimated factors
        if store:
            self.ii_inac = torch.cat([self.ii_inac, self.ii[mask]], 0)
            self.jj_inac = torch.cat([self.jj_inac, self.jj[mask]], 0)
            self.target_inac = torch.cat([self.target_inac, self.target[:,mask]], 1)
            self.weight_inac = torch.cat([self.weight_inac, self.weight[:,mask]], 1)

        self.ii = self.ii[~mask]
        self.jj = self.jj[~mask]
        self.age = self.age[~mask]
        
        if self.corr_impl == "volume":
            self.corr = self.corr[~mask]

        if self.net is not None:
            self.net = self.net[:,~mask]

        if self.inp is not None:
            self.inp = self.inp[:,~mask]

        self.target = self.target[:,~mask]
        self.weight = self.weight[:,~mask]


    @torch.cuda.amp.autocast(enabled=True)
    def rm_keyframe(self, ix):
        """ drop edges from factor graph """


        with self.video.get_lock():
            self.video.images[ix] = self.video.images[ix+1]
            self.video.poses[ix] = self.video.poses[ix+1]
            self.video.disps[ix] = self.video.disps[ix+1]
            self.video.disps_sens[ix] = self.video.disps_sens[ix+1]
            self.video.intrinsics[ix] = self.video.intrinsics[ix+1]

            self.video.nets[ix] = self.video.nets[ix+1]
            self.video.inps[ix] = self.video.inps[ix+1]
            self.video.fmaps[ix] = self.video.fmaps[ix+1]
            self.video.tstamp[ix] = self.video.tstamp[ix+1]
            self.video.masks[ix] = self.video.masks[ix+1]

        m = (self.ii_inac == ix) | (self.jj_inac == ix)
        self.ii_inac[self.ii_inac >= ix] -= 1
        self.jj_inac[self.jj_inac >= ix] -= 1

        if torch.any(m):
            self.ii_inac = self.ii_inac[~m]
            self.jj_inac = self.jj_inac[~m]
            self.target_inac = self.target_inac[:,~m]
            self.weight_inac = self.weight_inac[:,~m]

        m = (self.ii == ix) | (self.jj == ix)

        self.ii[self.ii >= ix] -= 1
        self.jj[self.jj >= ix] -= 1
        self.rm_factors(m, store=False)


    @torch.cuda.amp.autocast(enabled=True)
    def update(self, t0=None, t1=None, itrs=3, use_inactive=False, EP=1e-7, motion_only=False):
        """ run update operator on factor graph """

        # motion features
        with torch.cuda.amp.autocast(enabled=False):
            coords1, mask = self.video.reproject(self.ii, self.jj)
            motn = torch.cat([coords1 - self.coords0, self.target - coords1], dim=-1)
            motn = motn.permute(0,1,4,2,3).clamp(-64.0, 64.0)
        
        # correlation features
        corr = self.corr(coords1)
        self.net, delta, weight, damping, upmask = \
            self.update_op(self.net, self.inp, corr, motn, self.ii, self.jj)
        
        ##### save confidecnce weight for vis #####
        # for k in range(len(self.ii)):
        #     w = weight[:, k].detach().cpu().numpy()
        #     idx_i = self.ii[k]
        #     idx_j = self.jj[k]
        #     np.save(f'pred_conf/{idx_i:04d}_{idx_j:04d}.npy', w)
        #############################################
        
        # Shapes:
        # weight: [1, k, h//8, w//8, 2]
        # self.ii: [k]; self.jj: [k]
        msk = self.video.masks[self.ii] > 0
        weight[:,msk] = 0.0

        if t0 is None:
            t0 = max(1, self.ii.min().item()+1)

        with torch.cuda.amp.autocast(enabled=False):
            self.target = coords1 + delta.to(dtype=torch.float)
            self.weight = weight.to(dtype=torch.float)

            ht, wd = self.coords0.shape[0:2]
            self.damping[torch.unique(self.ii)] = damping

            if use_inactive:
                m = (self.ii_inac >= t0 - 3) & (self.jj_inac >= t0 - 3)
                ii = torch.cat([self.ii_inac[m], self.ii], 0)
                jj = torch.cat([self.jj_inac[m], self.jj], 0)
                target = torch.cat([self.target_inac[:,m], self.target], 1)
                weight = torch.cat([self.weight_inac[:,m], self.weight], 1)

            else:
                ii, jj, target, weight = self.ii, self.jj, self.target, self.weight


            damping = .2 * self.damping[torch.unique(ii)].contiguous() + EP

            target = target.view(-1, ht, wd, 2).permute(0,3,1,2).contiguous()
            weight = weight.view(-1, ht, wd, 2).permute(0,3,1,2).contiguous()

            # dense bundle adjustment
            self.video.ba(target, weight, damping, ii, jj, t0, t1, 
                itrs=itrs, lm=1e-4, ep=0.1, motion_only=motion_only)
        
            if self.upsample:
                self.video.upsample(torch.unique(self.ii), upmask)

        self.age += 1


    @torch.cuda.amp.autocast(enabled=False)
    def update_lowmem(self, t0=None, t1=None, itrs=2, use_inactive=False, EP=1e-7, steps=8):
        """ run update operator on factor graph - reduced memory implementation """

        # alternate corr implementation
        t = self.video.counter.value

        num, rig, ch, ht, wd = self.video.fmaps.shape
        corr_op = AltCorrBlock(self.video.fmaps.view(1, num*rig, ch, ht, wd))

        print("Global BA Iteration with {} steps".format(steps))
        for step in range(steps):
            # print("Global BA Iteration #{}".format(step+1))
            with torch.cuda.amp.autocast(enabled=False):
                coords1, mask = self.video.reproject(self.ii, self.jj)
                motn = torch.cat([coords1 - self.coords0, self.target - coords1], dim=-1)
                motn = motn.permute(0,1,4,2,3).clamp(-64.0, 64.0)

            s = 8
            for i in range(0, self.jj.max()+1, s):
                v = (self.ii >= i) & (self.ii < i + s)
                iis = self.ii[v]
                jjs = self.jj[v]

                ht, wd = self.coords0.shape[0:2]
                corr1 = corr_op(coords1[:,v], rig * iis, rig * jjs + (iis == jjs).long())

                with torch.cuda.amp.autocast(enabled=True):
                 
                    net, delta, weight, damping, upmask = \
                        self.update_op(self.net[:,v], self.video.inps[None,iis], corr1, motn[:,v], iis, jjs)

                    if self.upsample:
                        self.video.upsample(torch.unique(iis), upmask)

                    # Shapes:
                    # weight: [1, k, h//8, w//8, 2]
                    # self.ii: [k]; self.jj: [k]
                    msk = self.video.masks[iis] > 0
                    weight[:,msk] = 0.0

                self.net[:,v] = net
                self.target[:,v] = coords1[:,v] + delta.float()
                self.weight[:,v] = weight.float()
                self.damping[torch.unique(iis)] = damping

            damping = .2 * self.damping[torch.unique(self.ii)].contiguous() + EP
            target = self.target.view(-1, ht, wd, 2).permute(0,3,1,2).contiguous()
            weight = self.weight.view(-1, ht, wd, 2).permute(0,3,1,2).contiguous()

            # dense bundle adjustment
            self.video.ba(target, weight, damping, self.ii, self.jj, 1, t, 
                itrs=itrs, lm=1e-5, ep=1e-2, motion_only=False)

            self.video.dirty[:t] = True

    def add_neighborhood_factors(self, t0, t1, r=3):
        """ add edges between neighboring frames within radius r """

        ii, jj = torch.meshgrid(torch.arange(t0,t1), torch.arange(t0,t1), indexing='ij')
        ii = ii.reshape(-1).to(dtype=torch.long, device=self.device)
        jj = jj.reshape(-1).to(dtype=torch.long, device=self.device)

        c = 1 if self.video.stereo else 0

        keep = ((ii - jj).abs() > c) & ((ii - jj).abs() <= r)
        self.add_factors(ii[keep], jj[keep])

    
    def add_proximity_factors(self, t0=0, t1=0, rad=2, nms=2, beta=0.25, thresh=16.0, remove=False):
        """ add edges to the factor graph based on distance """

        t = self.video.counter.value
        ix = torch.arange(t0, t)
        jx = torch.arange(t1, t)

        ii, jj = torch.meshgrid(ix, jx, indexing='ij')
        ii = ii.reshape(-1)
        jj = jj.reshape(-1)

        d = self.video.distance(ii, jj, beta=beta)
        d[ii - rad < jj] = np.inf
        d[d > 100] = np.inf

        ii1 = torch.cat([self.ii, self.ii_bad, self.ii_inac], 0)
        jj1 = torch.cat([self.jj, self.jj_bad, self.jj_inac], 0)
        for i, j in zip(ii1.cpu().numpy(), jj1.cpu().numpy()):
            for di in range(-nms, nms+1):
                for dj in range(-nms, nms+1):
                    if abs(di) + abs(dj) <= max(min(abs(i-j)-2, nms), 0):
                        i1 = i + di
                        j1 = j + dj

                        if (t0 <= i1 < t) and (t1 <= j1 < t):
                            d[(i1-t0)*(t-t1) + (j1-t1)] = np.inf


        es = []
        for i in range(t0, t):
            if self.video.stereo:
                es.append((i, i))
                d[(i-t0)*(t-t1) + (i-t1)] = np.inf

            for j in range(max(i-rad-1,0), i):
                es.append((i,j))
                es.append((j,i))
                d[(i-t0)*(t-t1) + (j-t1)] = np.inf

        ix = torch.argsort(d)
        for k in ix:
            if d[k].item() > thresh:
                continue

            if len(es) > self.max_factors:
                break

            i = ii[k]
            j = jj[k]
            
            # bidirectional
            es.append((i, j))
            es.append((j, i))

            for di in range(-nms, nms+1):
                for dj in range(-nms, nms+1):
                    if abs(di) + abs(dj) <= max(min(abs(i-j)-2, nms), 0):
                        i1 = i + di
                        j1 = j + dj

                        if (t0 <= i1 < t) and (t1 <= j1 < t):
                            d[(i1-t0)*(t-t1) + (j1-t1)] = np.inf

        ii, jj = torch.as_tensor(es, device=self.device).unbind(dim=-1)
        self.add_factors(ii, jj, remove)