File size: 14,885 Bytes
b7eedf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import torch
import torch.nn.functional as F
import logging
import os
import os.path as osp
from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud

def to_cuda(data: dict):
    for k, v in data.items():
        if isinstance(v, torch.Tensor):
            data[k] = v.cuda(non_blocking=True)
        if isinstance(v, list) and len(v)>=1 and isinstance(v[0], torch.Tensor):
            for i, l_i in enumerate(v):
                data[k][i] = l_i.cuda(non_blocking=True)
    return data

def align_scale(pred: torch.tensor, target: torch.tensor):
    mask = target > 0
    if torch.sum(mask) > 10:
        scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8)
    else:
        scale = 1
    pred_scaled = pred * scale
    return pred_scaled, scale

def align_scale_shift(pred: torch.tensor, target: torch.tensor):
    mask = target > 0
    target_mask = target[mask].cpu().numpy()
    pred_mask = pred[mask].cpu().numpy()
    if torch.sum(mask) > 10:
        scale, shift = np.polyfit(pred_mask, target_mask, deg=1)
        if scale < 0:
            scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8)
            shift = 0
    else:
        scale = 1
        shift = 0
    pred = pred * scale + shift
    return pred, scale

def align_scale_shift_numpy(pred: np.array, target: np.array):
    mask = target > 0
    target_mask = target[mask]
    pred_mask = pred[mask]
    if np.sum(mask) > 10:
        scale, shift = np.polyfit(pred_mask, target_mask, deg=1)
        if scale < 0:
            scale = np.median(target[mask]) / (np.median(pred[mask]) + 1e-8)
            shift = 0
    else:
        scale = 1
        shift = 0
    pred = pred * scale + shift
    return pred, scale


def build_camera_model(H : int, W : int, intrinsics : list) -> np.array:
    """
    Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map. 
    """
    fx, fy, u0, v0 = intrinsics
    f = (fx + fy) / 2.0
    # principle point location
    x_row = np.arange(0, W).astype(np.float32)
    x_row_center_norm = (x_row - u0) / W
    x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W]

    y_col = np.arange(0, H).astype(np.float32) 
    y_col_center_norm = (y_col - v0) / H
    y_center = np.tile(y_col_center_norm, (W, 1)).T # [H, W]

    # FoV
    fov_x = np.arctan(x_center / (f / W))
    fov_y = np.arctan(y_center / (f / H))

    cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2)
    return cam_model

def resize_for_input(image, output_shape, intrinsic, canonical_shape, to_canonical_ratio):
    """
    Resize the input.
    Resizing consists of two processed, i.e. 1) to the canonical space (adjust the camera model); 2) resize the image while the camera model holds. Thus the
    label will be scaled with the resize factor.
    """
    padding = [123.675, 116.28, 103.53]
    h, w, _ = image.shape
    resize_ratio_h = output_shape[0] / canonical_shape[0]
    resize_ratio_w = output_shape[1] / canonical_shape[1]
    to_scale_ratio = min(resize_ratio_h, resize_ratio_w)

    resize_ratio = to_canonical_ratio * to_scale_ratio

    reshape_h = int(resize_ratio * h)
    reshape_w = int(resize_ratio * w)

    pad_h = max(output_shape[0] - reshape_h, 0)
    pad_w = max(output_shape[1] - reshape_w, 0)
    pad_h_half = int(pad_h / 2)
    pad_w_half = int(pad_w / 2)

    # resize
    image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
    # padding
    image = cv2.copyMakeBorder(
        image, 
        pad_h_half, 
        pad_h - pad_h_half, 
        pad_w_half, 
        pad_w - pad_w_half, 
        cv2.BORDER_CONSTANT, 
        value=padding)
    
    # Resize, adjust principle point
    intrinsic[2] = intrinsic[2] * to_scale_ratio
    intrinsic[3] = intrinsic[3] * to_scale_ratio

    cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
    cam_model = cv2.copyMakeBorder(
        cam_model, 
        pad_h_half, 
        pad_h - pad_h_half, 
        pad_w_half, 
        pad_w - pad_w_half, 
        cv2.BORDER_CONSTANT, 
        value=-1)

    pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
    label_scale_factor=1/to_scale_ratio
    return image, cam_model, pad, label_scale_factor


def get_prediction(
    model: torch.nn.Module,
    input: torch.tensor,
    cam_model: torch.tensor,
    pad_info: torch.tensor,
    scale_info: torch.tensor,
    gt_depth: torch.tensor,
    normalize_scale: float,
    ori_shape: list=[],
):

    data = dict(
        input=input,
        cam_model=cam_model,
    )
    pred_depth, confidence, output_dict = model.module.inference(data)

    return pred_depth, output_dict

def transform_test_data_scalecano(rgb, intrinsic, data_basic):
    """
    Pre-process the input for forwarding. Employ `label scale canonical transformation.'
        Args:
            rgb: input rgb image. [H, W, 3]
            intrinsic: camera intrinsic parameter, [fx, fy, u0, v0]
            data_basic: predefined canonical space in configs.
    """
    canonical_space = data_basic['canonical_space']
    forward_size = data_basic.crop_size
    mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None]
    std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None]

    # BGR to RGB
    #rgb = cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)

    ori_h, ori_w, _ = rgb.shape
    ori_focal = (intrinsic[0] + intrinsic[1]) / 2
    canonical_focal = canonical_space['focal_length']

    cano_label_scale_ratio = canonical_focal / ori_focal

    canonical_intrinsic = [
        intrinsic[0] * cano_label_scale_ratio,
        intrinsic[1] * cano_label_scale_ratio,
        intrinsic[2],
        intrinsic[3],
    ]

    # resize
    rgb, cam_model, pad, resize_label_scale_ratio = resize_for_input(rgb, forward_size, canonical_intrinsic, [ori_h, ori_w], 1.0)

    # label scale factor
    label_scale_factor = cano_label_scale_ratio * resize_label_scale_ratio

    rgb = torch.from_numpy(rgb.transpose((2, 0, 1))).float()
    rgb = torch.div((rgb - mean), std)
    rgb = rgb.cuda()
    
    cam_model = torch.from_numpy(cam_model.transpose((2, 0, 1))).float()
    cam_model = cam_model[None, :, :, :].cuda()
    cam_model_stacks = [
        torch.nn.functional.interpolate(cam_model, size=(cam_model.shape[2]//i, cam_model.shape[3]//i), mode='bilinear', align_corners=False)
        for i in [2, 4, 8, 16, 32]
    ]
    return rgb, cam_model_stacks, pad, label_scale_factor

def do_scalecano_test_with_custom_data(
    model: torch.nn.Module,
    cfg: dict,
    test_data: list,
    logger: logging.RootLogger,
    is_distributed: bool = True,
    local_rank: int = 0,
    bs: int = 2,  # Batch size parameter
):

    show_dir = cfg.show_dir
    save_interval = 1
    save_imgs_dir = show_dir + '/vis'
    os.makedirs(save_imgs_dir, exist_ok=True)
    save_pcd_dir = show_dir + '/pcd'
    os.makedirs(save_pcd_dir, exist_ok=True)

    normalize_scale = cfg.data_basic.depth_range[1]
    dam = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3'])
    dam_median = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3'])
    dam_global = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3'])
    
    # Process data in batches
    for i in tqdm(range(0, len(test_data), bs)):
        batch_data = test_data[i:i + bs]  # Extract batch
        rgb_inputs, pads, label_scale_factors, gt_depths, rgb_origins = [], [], [], [], []
        
        for an in batch_data:
            print(an['rgb'])
            rgb_origin = cv2.imread(an['rgb'])[:, :, ::-1].copy()
            rgb_origins.append(rgb_origin)
            gt_depth = None
            if an['depth'] is not None:
                gt_depth = cv2.imread(an['depth'], -1)
                gt_depth_scale = an['depth_scale']
                gt_depth = gt_depth / gt_depth_scale
            gt_depths.append(gt_depth)
            
            intrinsic = an['intrinsic']
            if intrinsic is None:
                intrinsic = [1000.0, 1000.0, rgb_origin.shape[1]/2, rgb_origin.shape[0]/2]
            
            rgb_input, _, pad, label_scale_factor = transform_test_data_scalecano(rgb_origin, intrinsic, cfg.data_basic)
            rgb_inputs.append(rgb_input)
            pads.append(pad)
            label_scale_factors.append(label_scale_factor)

        # Process the batch
        pred_depths, outputs = get_prediction(
            model=model,
            input=torch.stack(rgb_inputs),  # Stack inputs for batch processing
            cam_model=None,
            pad_info=pads,
            scale_info=None,
            gt_depth=None,
            normalize_scale=None,
        )
        
        for j, gt_depth in enumerate(gt_depths):
            normal_out = None
            if 'prediction_normal'  in outputs.keys():
                normal_out = outputs['prediction_normal'][j, :]
            
            postprocess_per_image(
                i*bs+j,
                pred_depths[j, :],
                gt_depth,
                intrinsic,
                rgb_origins[j],
                normal_out,
                pads[j],
                batch_data[j],
                dam,
                dam_median,
                dam_global,
                is_distributed,
                save_imgs_dir,
                save_pcd_dir,
                normalize_scale,
                label_scale_factors[j],
            )

    #if gt_depth_flag:
    if False:
        eval_error = dam.get_metrics()
        print('w/o match :', eval_error)

        eval_error_median = dam_median.get_metrics()
        print('median match :', eval_error_median)

        eval_error_global = dam_global.get_metrics()
        print('global match :', eval_error_global)
    else:
        print('missing gt_depth, only save visualizations...')


def postprocess_per_image(i, pred_depth, gt_depth, intrinsic, rgb_origin, normal_out, pad, an, dam, dam_median, dam_global, is_distributed, save_imgs_dir, save_pcd_dir, normalize_scale, scale_info):

    pred_depth = pred_depth.squeeze()
    pred_depth = pred_depth[pad[0] : pred_depth.shape[0] - pad[1], pad[2] : pred_depth.shape[1] - pad[3]]
    pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], [rgb_origin.shape[0], rgb_origin.shape[1]], mode='bilinear').squeeze() # to original size
    pred_depth = pred_depth * normalize_scale / scale_info

    pred_depth = (pred_depth > 0) * (pred_depth < 300) * pred_depth
    if gt_depth is not None:

        pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], (gt_depth.shape[0], gt_depth.shape[1]), mode='bilinear').squeeze() # to original size

        gt_depth = torch.from_numpy(gt_depth).cuda()

        pred_depth_median = pred_depth * gt_depth[gt_depth != 0].median() / pred_depth[gt_depth != 0].median()
        pred_global, _ = align_scale_shift(pred_depth, gt_depth)
        
        mask = (gt_depth > 1e-8)
        dam.update_metrics_gpu(pred_depth, gt_depth, mask, is_distributed)
        dam_median.update_metrics_gpu(pred_depth_median, gt_depth, mask, is_distributed)
        dam_global.update_metrics_gpu(pred_global, gt_depth, mask, is_distributed)
        print(gt_depth[gt_depth != 0].median() / pred_depth[gt_depth != 0].median(), )
    
    os.makedirs(osp.join(save_imgs_dir, an['folder']), exist_ok=True)
    rgb_torch = torch.from_numpy(rgb_origin).to(pred_depth.device).permute(2, 0, 1)
    mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None].to(rgb_torch.device)
    std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None].to(rgb_torch.device)
    rgb_torch = torch.div((rgb_torch - mean), std)

    save_val_imgs(
        i,
        pred_depth,
        gt_depth if gt_depth is not None else torch.ones_like(pred_depth, device=pred_depth.device),
        rgb_torch,
        osp.join(an['folder'], an['filename']),
        save_imgs_dir,
    )
    #save_raw_imgs(pred_depth.detach().cpu().numpy(), rgb_torch, osp.join(an['folder'], an['filename']), save_imgs_dir, 1000.0)

    # pcd
    pred_depth = pred_depth.detach().cpu().numpy()
    #pcd = reconstruct_pcd(pred_depth, intrinsic[0], intrinsic[1], intrinsic[2], intrinsic[3])
    #os.makedirs(osp.join(save_pcd_dir, an['folder']), exist_ok=True)
    #save_point_cloud(pcd.reshape((-1, 3)), rgb_origin.reshape(-1, 3), osp.join(save_pcd_dir, an['folder'], an['filename'][:-4]+'.ply'))

    if an['intrinsic'] == None:
        #for r in [0.9, 1.0, 1.1]:
        for r in [1.0]:
            #for f in [600, 800, 1000, 1250, 1500]:
            for f in [1000]:
                pcd = reconstruct_pcd(pred_depth, f * r, f * (2-r), intrinsic[2], intrinsic[3])
                fstr = '_fx_' + str(int(f * r)) + '_fy_' + str(int(f * (2-r)))
                os.makedirs(osp.join(save_pcd_dir, an['folder']), exist_ok=True)
                save_point_cloud(pcd.reshape((-1, 3)), rgb_origin.reshape(-1, 3), osp.join(save_pcd_dir, an['folder'], an['filename'][:-4] + fstr +'.ply'))

    if normal_out is not None:
        pred_normal = normal_out[:3, :, :] # (3, H, W)
        H, W = pred_normal.shape[1:]
        pred_normal = pred_normal[ :, pad[0]:H-pad[1], pad[2]:W-pad[3]]

        pred_normal = torch.nn.functional.interpolate(pred_normal[None, :], size=[rgb_origin.shape[0], rgb_origin.shape[1]], mode='bilinear', align_corners=True).squeeze()

        gt_normal = None
        #if gt_normal_flag:
        if False:
            pred_normal = torch.nn.functional.interpolate(pred_normal, size=gt_normal.shape[2:], mode='bilinear', align_corners=True)    
            gt_normal = cv2.imread(norm_path)
            gt_normal = cv2.cvtColor(gt_normal, cv2.COLOR_BGR2RGB) 
            gt_normal = np.array(gt_normal).astype(np.uint8)
            gt_normal = ((gt_normal.astype(np.float32) / 255.0) * 2.0) - 1.0
            norm_valid_mask = (np.linalg.norm(gt_normal, axis=2, keepdims=True) > 0.5)
            gt_normal = gt_normal * norm_valid_mask               
            gt_normal_mask = ~torch.all(gt_normal == 0, dim=1, keepdim=True)
            dam.update_normal_metrics_gpu(pred_normal, gt_normal, gt_normal_mask, cfg.distributed)# save valiad normal

        save_normal_val_imgs(iter, 
                            pred_normal, 
                            gt_normal if gt_normal is not None else torch.ones_like(pred_normal, device=pred_normal.device),
                            rgb_torch, # data['input'], 
                            osp.join(an['folder'], 'normal_'+an['filename']), 
                            save_imgs_dir,
                            )