Spaces:
Running
Running
File size: 14,045 Bytes
b7eedf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import os
import torch
import torch.nn as nn
from mono.utils.comm import main_process
import copy
import inspect
import logging
import glob
class LrUpdater():
"""Refer to LR Scheduler in MMCV.
Args:
@by_epoch (bool): LR changes epoch by epoch
@warmup (string): Type of warmup used. It can be None(use no warmup),
'constant', 'linear' or 'exp'
@warmup_iters (int): The number of iterations or epochs that warmup
lasts. Note when by_epoch == True, warmup_iters means the number
of epochs that warmup lasts, otherwise means the number of
iteration that warmup lasts
@warmup_ratio (float): LR used at the beginning of warmup equals to
warmup_ratio * initial_lr
@runner (dict): Configs for running. Run by epoches or iters.
"""
def __init__(self,
by_epoch: bool=True,
warmup: str=None,
warmup_iters: int=0,
warmup_ratio: float=0.1,
runner: dict={}):
# validate the "warmup" argument
if warmup is not None:
if warmup not in ['constant', 'linear', 'exp']:
raise ValueError(
f'"{warmup}" is not a supported type for warming up, valid'
' types are "constant" and "linear"')
if warmup is not None:
assert warmup_iters > 0, \
'"warmup_iters" must be a positive integer'
assert 0 < warmup_ratio <= 1.0, \
'"warmup_ratio" must be in range (0,1]'
if runner is None:
raise RuntimeError('runner should be set.')
self.by_epoch = by_epoch
self.warmup = warmup
self.warmup_iters = warmup_iters
self.warmup_ratio = warmup_ratio
self.runner = runner
self.max_iters = None
self.max_epoches = None
if 'IterBasedRunner' in self.runner.type:
self.max_iters = self.runner.max_iters
assert self.by_epoch==False
self.warmup_by_epoch = False
elif 'EpochBasedRunner' in self.runner.type:
self.max_epoches = self.runner.max_epoches
assert self.by_epoch==True
self.warmup_by_epoch = True
else:
raise ValueError(f'{self.runner.type} is not a supported type for running.')
if self.warmup_by_epoch:
self.warmup_epochs = self.warmup_iters
self.warmup_iters = None
else:
self.warmup_epochs = None
self.base_lr = [] # initial lr for all param groups
self.regular_lr = [] # expected lr if no warming up is performed
self._step_count = 0
def _set_lr(self, optimizer, lr_groups):
if isinstance(optimizer, dict):
for k, optim in optimizer.items():
for param_group, lr in zip(optim.param_groups, lr_groups[k]):
param_group['lr'] = lr
else:
for param_group, lr in zip(optimizer.param_groups,
lr_groups):
param_group['lr'] = lr
def get_lr(self, _iter, max_iter, base_lr):
raise NotImplementedError
def get_regular_lr(self, _iter, optimizer):
max_iters = self.max_iters if not self.by_epoch else self.max_epoches
if isinstance(optimizer, dict):
lr_groups = {}
for k in optimizer.keys():
_lr_group = [
self.get_lr(_iter, max_iters, _base_lr)
for _base_lr in self.base_lr[k]
]
lr_groups.update({k: _lr_group})
return lr_groups
else:
return [self.get_lr(_iter, max_iters, _base_lr) for _base_lr in self.base_lr]
def get_warmup_lr(self, cur_iters):
def _get_warmup_lr(cur_iters, regular_lr):
if self.warmup == 'constant':
warmup_lr = [_lr * self.warmup_ratio for _lr in regular_lr]
elif self.warmup == 'linear':
k = (1 - cur_iters / self.warmup_iters) * (1 -
self.warmup_ratio)
warmup_lr = [_lr * (1 - k) for _lr in regular_lr]
elif self.warmup == 'exp':
k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters)
warmup_lr = [_lr * k for _lr in regular_lr]
return warmup_lr
if isinstance(self.regular_lr, dict):
lr_groups = {}
for key, regular_lr in self.regular_lr.items():
lr_groups[key] = _get_warmup_lr(cur_iters, regular_lr)
return lr_groups
else:
return _get_warmup_lr(cur_iters, self.regular_lr)
def before_run(self, optimizer):
# NOTE: when resuming from a checkpoint, if 'initial_lr' is not saved,
# it will be set according to the optimizer params
if isinstance(optimizer, dict):
self.base_lr = {}
for k, optim in optimizer.items():
for group in optim.param_groups:
group.setdefault('initial_lr', group['lr'])
_base_lr = [
group['initial_lr'] for group in optim.param_groups
]
self.base_lr.update({k: _base_lr})
else:
for group in optimizer.param_groups:
group.setdefault('initial_lr', group['lr'])
self.base_lr = [
group['initial_lr'] for group in optimizer.param_groups
]
def after_train_epoch(self, optimizer):
self._step_count += 1
curr_epoch = self._step_count
self.regular_lr = self.get_regular_lr(curr_epoch, optimizer)
if self.warmup is None or curr_epoch > self.warmup_epoches:
self._set_lr(optimizer, self.regular_lr)
else:
#self.warmup_iters = int(self.warmup_epochs * epoch_len)
warmup_lr = self.get_warmup_lr(curr_epoch)
self._set_lr(optimizer, warmup_lr)
def after_train_iter(self, optimizer):
self._step_count += 1
cur_iter = self._step_count
self.regular_lr = self.get_regular_lr(cur_iter, optimizer)
if self.warmup is None or cur_iter >= self.warmup_iters:
self._set_lr(optimizer, self.regular_lr)
else:
warmup_lr = self.get_warmup_lr(cur_iter)
self._set_lr(optimizer, warmup_lr)
def get_curr_lr(self, cur_iter):
if self.warmup is None or cur_iter >= self.warmup_iters:
return self.regular_lr
else:
return self.get_warmup_lr(cur_iter)
def state_dict(self):
"""
Returns the state of the scheduler as a :class:`dict`.
It contains an entry for every variable in self.__dict__ which
is not the optimizer.
"""
return {key: value for key, value in self.__dict__.items() if key != 'optimizer'}
def load_state_dict(self, state_dict):
"""Loads the schedulers state.
Args:
@state_dict (dict): scheduler state. Should be an object returned
from a call to :meth:`state_dict`.
"""
self.__dict__.update(state_dict)
class PolyLrUpdater(LrUpdater):
def __init__(self, power=1., min_lr=0., **kwargs):
self.power = power
self.min_lr = min_lr
super(PolyLrUpdater, self).__init__(**kwargs)
def get_lr(self, _iter, max_iters, base_lr):
progress = _iter
max_progress = max_iters
coeff = (1 - progress / max_progress)**self.power
return (base_lr - self.min_lr) * coeff + self.min_lr
def build_lr_schedule_with_cfg(cfg):
# build learning rate schedule with config.
lr_config = copy.deepcopy(cfg.lr_config)
policy = lr_config.pop('policy')
if cfg.lr_config.policy == 'poly':
schedule = PolyLrUpdater(runner=cfg.runner, **lr_config)
else:
raise RuntimeError(f'{cfg.lr_config.policy} \
is not supported in this framework.')
return schedule
#def step_learning_rate(base_lr, epoch, step_epoch, multiplier=0.1):
# """Sets the learning rate to the base LR decayed by 10 every step epochs"""
# lr = base_lr * (multiplier ** (epoch // step_epoch))
# return lr
def register_torch_optimizers():
torch_optimizers = {}
for module_name in dir(torch.optim):
if module_name.startswith('__'):
continue
_optim = getattr(torch.optim, module_name)
if inspect.isclass(_optim) and issubclass(_optim,
torch.optim.Optimizer):
torch_optimizers[module_name] = _optim
return torch_optimizers
TORCH_OPTIMIZER = register_torch_optimizers()
def build_optimizer_with_cfg(cfg, model):
# encoder_parameters = []
# decoder_parameters = []
# nongrad_parameters = []
# for key, value in dict(model.named_parameters()).items():
# if value.requires_grad:
# if 'encoder' in key:
# encoder_parameters.append(value)
# else:
# decoder_parameters.append(value)
# else:
# nongrad_parameters.append(value)
#params = [{"params": filter(lambda p: p.requires_grad, model.parameters())}]
optim_cfg = copy.deepcopy(cfg.optimizer)
optim_type = optim_cfg.pop('type', None)
if optim_type is None:
raise RuntimeError(f'{optim_type} is not set')
if optim_type not in TORCH_OPTIMIZER:
raise RuntimeError(f'{optim_type} is not supported in torch {torch.__version__}')
if 'others' not in optim_cfg:
optim_cfg['others'] = optim_cfg['decoder']
def match(key1, key_list, strict_match=False):
if not strict_match:
for k in key_list:
if k in key1:
return k
else:
for k in key_list:
if k == key1.split('.')[1]:
return k
return None
optim_obj = TORCH_OPTIMIZER[optim_type]
matching_type = optim_cfg.pop('strict_match', False)
module_names = optim_cfg.keys()
model_parameters = {i: [] for i in module_names}
model_parameters['others'] = []
nongrad_parameters = []
for key, value in dict(model.named_parameters()).items():
if value.requires_grad:
match_key = match(key, module_names, matching_type)
# if optim_cfg[match_key]['lr'] == 0:
# value.requires_grad=False
# continue
if match_key is None:
model_parameters['others'].append(value)
else:
model_parameters[match_key].append(value)
else:
nongrad_parameters.append(value)
optims = [{'params':model_parameters[k], **optim_cfg[k]} for k in optim_cfg.keys()]
optimizer = optim_obj(optims)
# optim_args_encoder = optim_cfg.optimizer.encoder
# optim_args_decoder = optim_cfg.optimizer.decoder
# optimizer = optim_obj(
# [{'params':encoder_parameters, **optim_args_encoder},
# {'params':decoder_parameters, **optim_args_decoder},
# ])
return optimizer
def load_ckpt(load_path, model, optimizer=None, scheduler=None, strict_match=True, loss_scaler=None):
"""
Load the check point for resuming training or finetuning.
"""
logger = logging.getLogger()
if os.path.isfile(load_path):
if main_process():
logger.info(f"Loading weight '{load_path}'")
checkpoint = torch.load(load_path, map_location="cpu")
ckpt_state_dict = checkpoint['model_state_dict']
model.module.load_state_dict(ckpt_state_dict, strict=strict_match)
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
if scheduler is not None:
scheduler.load_state_dict(checkpoint['scheduler'])
if loss_scaler is not None and 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print('Loss scaler loaded', loss_scaler)
del ckpt_state_dict
del checkpoint
if main_process():
logger.info(f"Successfully loaded weight: '{load_path}'")
if scheduler is not None and optimizer is not None:
logger.info(f"Resume training from: '{load_path}'")
else:
if main_process():
raise RuntimeError(f"No weight found at '{load_path}'")
return model, optimizer, scheduler, loss_scaler
def save_ckpt(cfg, model, optimizer, scheduler, curr_iter=0, curr_epoch=None, loss_scaler=None):
"""
Save the model, optimizer, lr scheduler.
"""
logger = logging.getLogger()
if 'IterBasedRunner' in cfg.runner.type:
max_iters = cfg.runner.max_iters
elif 'EpochBasedRunner' in cfg.runner.type:
max_iters = cfg.runner.max_epoches
else:
raise TypeError(f'{cfg.runner.type} is not supported')
ckpt = dict(model_state_dict=model.module.state_dict(),
optimizer=optimizer.state_dict(),
max_iter=cfg.runner.max_iters if 'max_iters' in cfg.runner \
else cfg.runner.max_epoches,
scheduler=scheduler.state_dict(),
# current_iter=curr_iter,
# current_epoch=curr_epoch,
)
if loss_scaler is not None:
# amp state_dict
ckpt.update(dict(scaler=loss_scaler.state_dict()))
ckpt_dir = os.path.join(cfg.work_dir, 'ckpt')
os.makedirs(ckpt_dir, exist_ok=True)
save_name = os.path.join(ckpt_dir, 'step%08d.pth' % curr_iter)
saved_ckpts = glob.glob(ckpt_dir + '/step*.pth')
torch.save(ckpt, save_name)
# keep the last 8 ckpts
if len(saved_ckpts) > 8:
saved_ckpts.sort()
os.remove(saved_ckpts.pop(0))
logger.info(f'Save model: {save_name}')
if __name__ == '__main__':
print(TORCH_OPTIMIZER) |