Spaces:
Running
Running
#import collections | |
import collections.abc as collections | |
import cv2 | |
import math | |
import numpy as np | |
import numbers | |
import random | |
import torch | |
from imgaug import augmenters as iaa | |
import matplotlib | |
import matplotlib.cm | |
import mono.utils.weather_aug_utils as wa | |
""" | |
Provides a set of Pytorch transforms that use OpenCV instead of PIL (Pytorch default) | |
for image manipulation. | |
""" | |
class Compose(object): | |
# Composes transforms: transforms.Compose([transforms.RandScale([0.5, 2.0]), transforms.ToTensor()]) | |
def __init__(self, transforms): | |
self.transforms = transforms | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
for t in self.transforms: | |
images, labels, intrinsics, cam_models, normals, other_labels, transform_paras = t(images, labels, intrinsics, cam_models, normals, other_labels, transform_paras) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class ToTensor(object): | |
# Converts numpy.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W). | |
def __init__(self, **kwargs): | |
return | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
if not isinstance(images, list) or not isinstance(labels, list) or not isinstance(intrinsics, list): | |
raise (RuntimeError("transform.ToTensor() only handle inputs/labels/intrinsics lists.")) | |
if len(images) != len(intrinsics): | |
raise (RuntimeError("Numbers of images and intrinsics are not matched.")) | |
if not isinstance(images[0], np.ndarray) or not isinstance(labels[0], np.ndarray): | |
raise (RuntimeError("transform.ToTensor() only handle np.ndarray for the input and label." | |
"[eg: data readed by cv2.imread()].\n")) | |
if not isinstance(intrinsics[0], list): | |
raise (RuntimeError("transform.ToTensor() only handle list for the camera intrinsics")) | |
if len(images[0].shape) > 3 or len(images[0].shape) < 2: | |
raise (RuntimeError("transform.ToTensor() only handle image(np.ndarray) with 3 dims or 2 dims.\n")) | |
if len(labels[0].shape) > 3 or len(labels[0].shape) < 2: | |
raise (RuntimeError("transform.ToTensor() only handle label(np.ndarray) with 3 dims or 2 dims.\n")) | |
if len(intrinsics[0]) >4 or len(intrinsics[0]) < 3: | |
raise (RuntimeError("transform.ToTensor() only handle intrinsic(list) with 3 sizes or 4 sizes.\n")) | |
for i, img in enumerate(images): | |
if len(img.shape) == 2: | |
img = np.expand_dims(img, axis=2) | |
images[i] = torch.from_numpy(img.transpose((2, 0, 1))).float() | |
for i, lab in enumerate(labels): | |
if len(lab.shape) == 2: | |
lab = np.expand_dims(lab, axis=0) | |
labels[i] = torch.from_numpy(lab).float() | |
for i, intrinsic in enumerate(intrinsics): | |
if len(intrinsic) == 3: | |
intrinsic = [intrinsic[0],] + intrinsic | |
intrinsics[i] = torch.tensor(intrinsic, dtype=torch.float) | |
if cam_models is not None: | |
for i, cam_model in enumerate(cam_models): | |
cam_models[i] = torch.from_numpy(cam_model.transpose((2, 0, 1))).float() if cam_model is not None else None | |
if normals is not None: | |
for i, normal in enumerate(normals): | |
normals[i] = torch.from_numpy(normal.transpose((2, 0, 1))).float() | |
if other_labels is not None: | |
for i, lab in enumerate(other_labels): | |
if len(lab.shape) == 2: | |
lab = np.expand_dims(lab, axis=0) | |
other_labels[i] = torch.from_numpy(lab).float() | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class Normalize(object): | |
# Normalize tensor with mean and standard deviation along channel: channel = (channel - mean) / std | |
def __init__(self, mean, std=None, **kwargs): | |
if std is None: | |
assert len(mean) > 0 | |
else: | |
assert len(mean) == len(std) | |
self.mean = torch.tensor(mean).float()[:, None, None] | |
self.std = torch.tensor(std).float()[:, None, None] if std is not None \ | |
else torch.tensor([1.0, 1.0, 1.0]).float()[:, None, None] | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
# if self.std is None: | |
# # for t, m in zip(image, self.mean): | |
# # t.sub(m) | |
# image = image - self.mean | |
# if ref_images is not None: | |
# for i, ref_i in enumerate(ref_images): | |
# ref_images[i] = ref_i - self.mean | |
# else: | |
# # for t, m, s in zip(image, self.mean, self.std): | |
# # t.sub(m).div(s) | |
# image = (image - self.mean) / self.std | |
# if ref_images is not None: | |
# for i, ref_i in enumerate(ref_images): | |
# ref_images[i] = (ref_i - self.mean) / self.std | |
for i, img in enumerate(images): | |
img = torch.div((img - self.mean), self.std) | |
images[i] = img | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class ResizeCanonical(object): | |
""" | |
Resize the input to the canonical space first, then resize the input with random sampled size. | |
In the first stage, we assume the distance holds while the camera model varies. | |
In the second stage, we aim to simulate the observation in different distance. The camera will move along the optical axis. | |
Args: | |
images: list of RGB images. | |
labels: list of depth/disparity labels. | |
other labels: other labels, such as instance segmentations, semantic segmentations... | |
""" | |
def __init__(self, **kwargs): | |
self.ratio_range = kwargs['ratio_range'] | |
self.canonical_focal = kwargs['focal_length'] | |
self.crop_size = kwargs['crop_size'] | |
def random_on_canonical_transform(self, image, label, intrinsic, cam_model, to_random_ratio): | |
ori_h, ori_w, _ = image.shape | |
ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0 | |
to_canonical_ratio = self.canonical_focal / ori_focal | |
to_scale_ratio = to_random_ratio | |
resize_ratio = to_canonical_ratio * to_random_ratio | |
reshape_h = int(ori_h * resize_ratio + 0.5) | |
reshape_w = int(ori_w * resize_ratio + 0.5) | |
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
if intrinsic is not None: | |
intrinsic = [self.canonical_focal, self.canonical_focal, intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio] | |
if label is not None: | |
# number of other labels may be less than that of image | |
label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
# scale the label and camera intrinsics | |
label = label / to_scale_ratio | |
if cam_model is not None: | |
# Should not directly resize the cam_model. | |
# Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. | |
# cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) | |
return image, label, intrinsic, cam_model, to_scale_ratio | |
def random_on_crop_transform(self, image, label, intrinsic, cam_model, to_random_ratio): | |
ori_h, ori_w, _ = image.shape | |
crop_h, crop_w = self.crop_size | |
ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0 | |
to_canonical_ratio = self.canonical_focal / ori_focal | |
# random resize based on the last crop size | |
proposal_reshape_h = int(crop_h * to_random_ratio + 0.5) | |
proposal_reshape_w = int(crop_w * to_random_ratio + 0.5) | |
resize_ratio_h = proposal_reshape_h / ori_h | |
resize_ratio_w = proposal_reshape_w / ori_w | |
resize_ratio = min(resize_ratio_h, resize_ratio_w) # resize based on the long edge | |
reshape_h = int(ori_h * resize_ratio + 0.5) | |
reshape_w = int(ori_w * resize_ratio + 0.5) | |
to_scale_ratio = resize_ratio / to_canonical_ratio | |
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
if intrinsic is not None: | |
intrinsic = [self.canonical_focal, self.canonical_focal, intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio] | |
if label is not None: | |
# number of other labels may be less than that of image | |
label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
# scale the label and camera intrinsics | |
label = label / to_scale_ratio | |
if cam_model is not None: | |
# Should not directly resize the cam_model. | |
# Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. | |
# cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) | |
return image, label, intrinsic, cam_model, to_scale_ratio | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
assert len(images[0].shape) == 3 and len(labels[0].shape) == 2 | |
assert labels[0].dtype == np.float | |
target_focal = (intrinsics[0][0] + intrinsics[0][1]) / 2.0 | |
target_to_canonical_ratio = self.canonical_focal / target_focal | |
target_img_shape = images[0].shape | |
to_random_ratio = random.uniform(self.ratio_range[0], self.ratio_range[1]) | |
to_scale_ratio = 0.0 | |
for i in range(len(images)): | |
img = images[i] | |
label = labels[i] if i < len(labels) else None | |
intrinsic = intrinsics[i] if i < len(intrinsics) else None | |
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None | |
img, label, intrinsic, cam_model, to_scale_ratio = self.random_on_canonical_transform( | |
img, label, intrinsic, cam_model, to_random_ratio) | |
images[i] = img | |
if label is not None: | |
labels[i] = label | |
if intrinsic is not None: | |
intrinsics[i] = intrinsic | |
if cam_model is not None: | |
cam_models[i] = cam_model | |
if normals != None: | |
reshape_h, reshape_w, _ = images[0].shape | |
for i, normal in enumerate(normals): | |
normals[i] = cv2.resize(normal, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
if other_labels != None: | |
# other labels are like semantic segmentations, instance segmentations, instance planes segmentations... | |
#resize_ratio = target_to_canonical_ratio * to_scale_ratio | |
#reshape_h = int(target_img_shape[0] * resize_ratio + 0.5) | |
#reshape_w = int(target_img_shape[1] * resize_ratio + 0.5) | |
reshape_h, reshape_w, _ = images[0].shape | |
for i, other_label_i in enumerate(other_labels): | |
other_labels[i] = cv2.resize(other_label_i, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
if transform_paras is not None: | |
transform_paras.update(label_scale_factor = 1.0/to_scale_ratio) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class LabelScaleCononical(object): | |
""" | |
To solve the ambiguity observation for the mono branch, i.e. different focal length (object size) with the same depth, cameras are | |
mapped to a cononical space. To mimic this, we set the focal length to a canonical one and scale the depth value. NOTE: resize the image based on the ratio can also solve this ambiguity. | |
Args: | |
images: list of RGB images. | |
labels: list of depth/disparity labels. | |
other labels: other labels, such as instance segmentations, semantic segmentations... | |
""" | |
def __init__(self, **kwargs): | |
self.canonical_focal = kwargs['focal_length'] | |
def _get_scale_ratio(self, intrinsic): | |
target_focal_x = intrinsic[0] | |
label_scale_ratio = self.canonical_focal / target_focal_x | |
pose_scale_ratio = 1.0 | |
return label_scale_ratio, pose_scale_ratio | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
assert len(images[0].shape) == 3 and len(labels[0].shape) == 2 | |
#assert labels[0].dtype == np.float | |
label_scale_ratio = None | |
pose_scale_ratio = None | |
for i in range(len(intrinsics)): | |
img_i = images[i] | |
label_i = labels[i] if i < len(labels) else None | |
intrinsic_i = intrinsics[i].copy() | |
cam_model_i = cam_models[i] if cam_models is not None and i < len(cam_models) else None | |
label_scale_ratio, pose_scale_ratio = self._get_scale_ratio(intrinsic_i) | |
# adjust the focal length, map the current camera to the canonical space | |
intrinsics[i] = [intrinsic_i[0]*label_scale_ratio, intrinsic_i[1]*label_scale_ratio, intrinsic_i[2], intrinsic_i[3]] | |
# scale the label to the canonical space | |
if label_i is not None: | |
labels[i] = label_i * label_scale_ratio | |
if cam_model_i is not None: | |
# As the focal length is adjusted (canonical focal length), the camera model should be re-built. | |
ori_h, ori_w, _ = img_i.shape | |
cam_models[i] = build_camera_model(ori_h, ori_w, intrinsics[i]) | |
if transform_paras is not None: | |
transform_paras.update(label_scale_factor = label_scale_ratio) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class ResizeKeepRatio(object): | |
""" | |
Resize and pad to a given size. Hold the aspect ratio. | |
This resizing assumes that the camera model remains unchanged. | |
Args: | |
resize_size: predefined output size. | |
""" | |
def __init__(self, resize_size, padding=None, ignore_label=-1, **kwargs): | |
if isinstance(resize_size, int): | |
self.resize_h = resize_size | |
self.resize_w = resize_size | |
elif isinstance(resize_size, collections.Iterable) and len(resize_size) == 2 \ | |
and isinstance(resize_size[0], int) and isinstance(resize_size[1], int) \ | |
and resize_size[0] > 0 and resize_size[1] > 0: | |
self.resize_h = resize_size[0] | |
self.resize_w = resize_size[1] | |
else: | |
raise (RuntimeError("crop size error.\n")) | |
if padding is None: | |
self.padding = padding | |
elif isinstance(padding, list): | |
if all(isinstance(i, numbers.Number) for i in padding): | |
self.padding = padding | |
else: | |
raise (RuntimeError("padding in Crop() should be a number list\n")) | |
if len(padding) != 3: | |
raise (RuntimeError("padding channel is not equal with 3\n")) | |
else: | |
raise (RuntimeError("padding in Crop() should be a number list\n")) | |
if isinstance(ignore_label, int): | |
self.ignore_label = ignore_label | |
else: | |
raise (RuntimeError("ignore_label should be an integer number\n")) | |
self.crop_size = kwargs['crop_size'] | |
self.canonical_focal = kwargs['focal_length'] | |
def main_data_transform(self, image, label, intrinsic, cam_model, resize_ratio, padding, to_scale_ratio): | |
""" | |
Resize data first and then do the padding. | |
'label' will be scaled. | |
""" | |
h, w, _ = image.shape | |
reshape_h = int(resize_ratio * h) | |
reshape_w = int(resize_ratio * w) | |
pad_h, pad_w, pad_h_half, pad_w_half = padding | |
# resize | |
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
# padding | |
image = cv2.copyMakeBorder( | |
image, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=self.padding) | |
if label is not None: | |
# label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
label = resize_depth_preserve(label, (reshape_h, reshape_w)) | |
label = cv2.copyMakeBorder( | |
label, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=self.ignore_label) | |
# scale the label | |
label = label / to_scale_ratio | |
# Resize, adjust principle point | |
if intrinsic is not None: | |
intrinsic[2] = intrinsic[2] * resize_ratio | |
intrinsic[3] = intrinsic[3] * resize_ratio | |
if cam_model is not None: | |
#cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) | |
cam_model = cv2.copyMakeBorder( | |
cam_model, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=self.ignore_label) | |
# Pad, adjust the principle point | |
if intrinsic is not None: | |
intrinsic[2] = intrinsic[2] + pad_w_half | |
intrinsic[3] = intrinsic[3] + pad_h_half | |
return image, label, intrinsic, cam_model | |
def get_label_scale_factor(self, image, intrinsic, resize_ratio): | |
ori_h, ori_w, _ = image.shape | |
crop_h, crop_w = self.crop_size | |
ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0 #intrinsic[0] # | |
to_canonical_ratio = self.canonical_focal / ori_focal | |
to_scale_ratio = resize_ratio / to_canonical_ratio | |
return to_scale_ratio | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
target_h, target_w, _ = images[0].shape | |
resize_ratio_h = self.resize_h / target_h | |
resize_ratio_w = self.resize_w / target_w | |
resize_ratio = min(resize_ratio_h, resize_ratio_w) | |
reshape_h = int(resize_ratio * target_h) | |
reshape_w = int(resize_ratio * target_w) | |
pad_h = max(self.resize_h - reshape_h, 0) | |
pad_w = max(self.resize_w - reshape_w, 0) | |
pad_h_half = int(pad_h / 2) | |
pad_w_half = int(pad_w / 2) | |
pad_info = [pad_h, pad_w, pad_h_half, pad_w_half] | |
to_scale_ratio = self.get_label_scale_factor(images[0], intrinsics[0], resize_ratio) | |
for i in range(len(images)): | |
img = images[i] | |
label = labels[i] if i < len(labels) else None | |
intrinsic = intrinsics[i] if i < len(intrinsics) else None | |
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None | |
img, label, intrinsic, cam_model = self.main_data_transform( | |
img, label, intrinsic, cam_model, resize_ratio, pad_info, to_scale_ratio) | |
images[i] = img | |
if label is not None: | |
labels[i] = label | |
if intrinsic is not None: | |
intrinsics[i] = intrinsic | |
if cam_model is not None: | |
cam_models[i] = cam_model | |
if normals is not None: | |
for i, normal in enumerate(normals): | |
normal = cv2.resize(normal, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
# pad | |
normals[i] = cv2.copyMakeBorder( | |
normal, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=0) | |
if other_labels is not None: | |
for i, other_lab in enumerate(other_labels): | |
# resize | |
other_lab = cv2.resize(other_lab, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
# pad | |
other_labels[i] = cv2.copyMakeBorder( | |
other_lab, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=self.ignore_label) | |
if transform_paras is not None: | |
transform_paras.update(pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]) | |
if 'label_scale_factor' in transform_paras: | |
transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * 1.0 / to_scale_ratio | |
else: | |
transform_paras.update(label_scale_factor=1.0/to_scale_ratio) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class KeepResizeCanoSize(object): | |
""" | |
Resize and pad to a given size. Hold the aspect ratio. | |
This resizing assumes that the camera model remains unchanged. | |
Args: | |
resize_size: predefined output size. | |
""" | |
def __init__(self, resize_size, padding=None, ignore_label=-1, **kwargs): | |
if isinstance(resize_size, int): | |
self.resize_h = resize_size | |
self.resize_w = resize_size | |
elif isinstance(resize_size, collections.Iterable) and len(resize_size) == 2 \ | |
and isinstance(resize_size[0], int) and isinstance(resize_size[1], int) \ | |
and resize_size[0] > 0 and resize_size[1] > 0: | |
self.resize_h = resize_size[0] | |
self.resize_w = resize_size[1] | |
else: | |
raise (RuntimeError("crop size error.\n")) | |
if padding is None: | |
self.padding = padding | |
elif isinstance(padding, list): | |
if all(isinstance(i, numbers.Number) for i in padding): | |
self.padding = padding | |
else: | |
raise (RuntimeError("padding in Crop() should be a number list\n")) | |
if len(padding) != 3: | |
raise (RuntimeError("padding channel is not equal with 3\n")) | |
else: | |
raise (RuntimeError("padding in Crop() should be a number list\n")) | |
if isinstance(ignore_label, int): | |
self.ignore_label = ignore_label | |
else: | |
raise (RuntimeError("ignore_label should be an integer number\n")) | |
self.crop_size = kwargs['crop_size'] | |
self.canonical_focal = kwargs['focal_length'] | |
def main_data_transform(self, image, label, intrinsic, cam_model, resize_ratio, padding, to_scale_ratio): | |
""" | |
Resize data first and then do the padding. | |
'label' will be scaled. | |
""" | |
h, w, _ = image.shape | |
reshape_h = int(resize_ratio * h) | |
reshape_w = int(resize_ratio * w) | |
pad_h, pad_w, pad_h_half, pad_w_half = padding | |
# resize | |
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
# padding | |
image = cv2.copyMakeBorder( | |
image, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=self.padding) | |
if label is not None: | |
# label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
label = resize_depth_preserve(label, (reshape_h, reshape_w)) | |
label = cv2.copyMakeBorder( | |
label, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=self.ignore_label) | |
# scale the label | |
label = label / to_scale_ratio | |
# Resize, adjust principle point | |
if intrinsic is not None: | |
intrinsic[2] = intrinsic[2] * resize_ratio | |
intrinsic[3] = intrinsic[3] * resize_ratio | |
if cam_model is not None: | |
#cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) | |
cam_model = cv2.copyMakeBorder( | |
cam_model, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=self.ignore_label) | |
# Pad, adjust the principle point | |
if intrinsic is not None: | |
intrinsic[2] = intrinsic[2] + pad_w_half | |
intrinsic[3] = intrinsic[3] + pad_h_half | |
return image, label, intrinsic, cam_model | |
# def get_label_scale_factor(self, image, intrinsic, resize_ratio): | |
# ori_h, ori_w, _ = image.shape | |
# crop_h, crop_w = self.crop_size | |
# ori_focal = intrinsic[0] #(intrinsic[0] + intrinsic[1]) / 2.0 | |
# to_canonical_ratio = self.canonical_focal / ori_focal | |
# to_scale_ratio = resize_ratio / to_canonical_ratio | |
# return to_scale_ratio | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
target_h, target_w, _ = images[0].shape | |
ori_focal = intrinsics[0][0] | |
to_canonical_ratio = self.canonical_focal / ori_focal | |
resize_ratio = to_canonical_ratio | |
reshape_h = int(resize_ratio * target_h) | |
reshape_w = int(resize_ratio * target_w) | |
pad_h = 32 - reshape_h % 32 | |
pad_w = 32 - reshape_w % 32 | |
pad_h_half = int(pad_h / 2) | |
pad_w_half = int(pad_w / 2) | |
pad_info = [pad_h, pad_w, pad_h_half, pad_w_half] | |
to_scale_ratio = 1.0 | |
for i in range(len(images)): | |
img = images[i] | |
label = labels[i] if i < len(labels) else None | |
intrinsic = intrinsics[i] if i < len(intrinsics) else None | |
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None | |
img, label, intrinsic, cam_model = self.main_data_transform( | |
img, label, intrinsic, cam_model, resize_ratio, pad_info, to_scale_ratio) | |
images[i] = img | |
if label is not None: | |
labels[i] = label | |
if intrinsic is not None: | |
intrinsics[i] = intrinsic | |
if cam_model is not None: | |
cam_models[i] = cam_model | |
if normals is not None: | |
for i, normal in enumerate(normals): | |
# resize | |
normal = cv2.resize(normal, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
# pad | |
normals[i] = cv2.copyMakeBorder( | |
normal, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=0) | |
if other_labels is not None: | |
for i, other_lab in enumerate(other_labels): | |
# resize | |
other_lab = cv2.resize(other_lab, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
# pad | |
other_labels[i] = cv2.copyMakeBorder( | |
other_lab, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=self.ignore_label) | |
if transform_paras is not None: | |
transform_paras.update(pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]) | |
if 'label_scale_factor' in transform_paras: | |
transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * 1.0 / to_scale_ratio | |
else: | |
transform_paras.update(label_scale_factor=1.0/to_scale_ratio) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class RandomCrop(object): | |
"""Crops the given ndarray image (H*W*C or H*W). | |
Args: | |
size (sequence or int): Desired output size of the crop. If size is an | |
int instead of sequence like (h, w), a square crop (size, size) is made. | |
""" | |
def __init__(self, crop_size, crop_type='center', padding=None, ignore_label=-1, **kwargs): | |
if isinstance(crop_size, int): | |
self.crop_h = crop_size | |
self.crop_w = crop_size | |
elif isinstance(crop_size, collections.Iterable) and len(crop_size) == 2 \ | |
and isinstance(crop_size[0], int) and isinstance(crop_size[1], int) \ | |
and crop_size[0] > 0 and crop_size[1] > 0: | |
self.crop_h = crop_size[0] | |
self.crop_w = crop_size[1] | |
else: | |
raise (RuntimeError("crop size error.\n")) | |
if crop_type == 'center' or crop_type == 'rand' or crop_type=='rand_in_field': | |
self.crop_type = crop_type | |
else: | |
raise (RuntimeError("crop type error: rand | center | rand_in_field \n")) | |
if padding is None: | |
self.padding = padding | |
elif isinstance(padding, list): | |
if all(isinstance(i, numbers.Number) for i in padding): | |
self.padding = padding | |
else: | |
raise (RuntimeError("padding in Crop() should be a number list\n")) | |
if len(padding) != 3: | |
raise (RuntimeError("padding channel is not equal with 3\n")) | |
else: | |
raise (RuntimeError("padding in Crop() should be a number list\n")) | |
if isinstance(ignore_label, int): | |
self.ignore_label = ignore_label | |
else: | |
raise (RuntimeError("ignore_label should be an integer number\n")) | |
def cal_padding_paras(self, h, w): | |
# padding if current size is not satisfied | |
pad_h = max(self.crop_h - h, 0) | |
pad_w = max(self.crop_w - w, 0) | |
pad_h_half = int(pad_h / 2) | |
pad_w_half = int(pad_w / 2) | |
return pad_h, pad_w, pad_h_half, pad_w_half | |
def cal_cropping_paras(self, h, w, intrinsic): | |
u0 = intrinsic[2] | |
v0 = intrinsic[3] | |
if self.crop_type == 'rand': | |
h_min = 0 | |
h_max = h - self.crop_h | |
w_min = 0 | |
w_max = w - self.crop_w | |
elif self.crop_type == 'center': | |
h_min = (h - self.crop_h) / 2 | |
h_max = (h - self.crop_h) / 2 | |
w_min = (w - self.crop_w) / 2 | |
w_max = (w - self.crop_w) / 2 | |
else: # rand in field | |
h_min = min(max(0, v0 - 0.75*self.crop_h), h-self.crop_h) | |
h_max = min(max(v0 - 0.25*self.crop_h, 0), h-self.crop_h) | |
w_min = min(max(0, u0 - 0.75*self.crop_w), w-self.crop_w) | |
w_max = min(max(u0 - 0.25*self.crop_w, 0), w-self.crop_w) | |
h_off = random.randint(int(h_min), int(h_max)) | |
w_off = random.randint(int(w_min), int(w_max)) | |
return h_off, w_off | |
def main_data_transform(self, image, label, intrinsic, cam_model, | |
pad_h, pad_w, pad_h_half, pad_w_half, h_off, w_off): | |
# padding if current size is not satisfied | |
if pad_h > 0 or pad_w > 0: | |
if self.padding is None: | |
raise (RuntimeError("depthtransform.Crop() need padding while padding argument is None\n")) | |
image = cv2.copyMakeBorder(image, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.padding) | |
if label is not None: | |
label = cv2.copyMakeBorder(label, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label) | |
if cam_model is not None: | |
cam_model = cv2.copyMakeBorder(cam_model, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label) | |
# cropping | |
image = image[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w] | |
if label is not None: | |
label = label[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w] | |
if cam_model is not None: | |
cam_model = cam_model[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w] | |
if intrinsic is not None: | |
intrinsic[2] = intrinsic[2] + pad_w_half - w_off | |
intrinsic[3] = intrinsic[3] + pad_h_half - h_off | |
return image, label, intrinsic, cam_model | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
if 'random_crop_size' in transform_paras and transform_paras['random_crop_size'] is not None \ | |
and (transform_paras['random_crop_size'][0] + transform_paras['random_crop_size'][1] > 500): | |
self.crop_h = int(transform_paras['random_crop_size'][0].item()) | |
self.crop_w = int(transform_paras['random_crop_size'][1].item()) | |
target_img = images[0] | |
target_h, target_w, _ = target_img.shape | |
target_intrinsic = intrinsics[0] | |
pad_h, pad_w, pad_h_half, pad_w_half = self.cal_padding_paras(target_h, target_w) | |
h_off, w_off = self.cal_cropping_paras(target_h+pad_h, target_w+pad_w, target_intrinsic) | |
for i in range(len(images)): | |
img = images[i] | |
label = labels[i] if i < len(labels) else None | |
intrinsic = intrinsics[i].copy() if i < len(intrinsics) else None | |
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None | |
img, label, intrinsic, cam_model = self.main_data_transform( | |
img, label, intrinsic, cam_model, | |
pad_h, pad_w, pad_h_half, pad_w_half, h_off, w_off) | |
images[i] = img | |
if label is not None: | |
labels[i] = label | |
if intrinsic is not None: | |
intrinsics[i] = intrinsic | |
if cam_model is not None: | |
cam_models[i] = cam_model | |
pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half] | |
if normals is not None: | |
for i, normal in enumerate(normals): | |
# padding if current size is not satisfied | |
normal = cv2.copyMakeBorder(normal, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=0) | |
normals[i] = normal[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w] | |
if other_labels is not None: | |
for i, other_lab in enumerate(other_labels): | |
# padding if current size is not satisfied | |
other_lab = cv2.copyMakeBorder(other_lab, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label) | |
other_labels[i] = other_lab[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w] | |
if transform_paras is not None: | |
transform_paras.update(dict(pad=pad)) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class RandomResize(object): | |
""" | |
Random resize the image. During this process, the camera model is hold, and thus the depth label is scaled. | |
Args: | |
images: list of RGB images. | |
labels: list of depth/disparity labels. | |
other labels: other labels, such as instance segmentations, semantic segmentations... | |
""" | |
def __init__(self, ratio_range=(0.85, 1.15), prob=0.5, is_lidar=True, **kwargs): | |
self.ratio_range = ratio_range | |
self.is_lidar = is_lidar | |
self.prob = prob | |
def random_resize(self, image, label, intrinsic, cam_model, to_random_ratio): | |
ori_h, ori_w, _ = image.shape | |
resize_ratio = to_random_ratio | |
label_scale_ratio = 1.0 / resize_ratio | |
reshape_h = int(ori_h * resize_ratio + 0.5) | |
reshape_w = int(ori_w * resize_ratio + 0.5) | |
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
if intrinsic is not None: | |
intrinsic = [intrinsic[0], intrinsic[1], intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio] | |
if label is not None: | |
if self.is_lidar: | |
label = resize_depth_preserve(label, (reshape_h, reshape_w)) | |
else: | |
label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
# scale the label | |
label = label * label_scale_ratio | |
if cam_model is not None: | |
# Should not directly resize the cam_model. | |
# Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. | |
# cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) | |
return image, label, intrinsic, cam_model, label_scale_ratio | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
assert len(images[0].shape) == 3 and len(labels[0].shape) == 2 | |
assert labels[0].dtype == np.float | |
# target_focal = (intrinsics[0][0] + intrinsics[0][1]) / 2.0 | |
# target_to_canonical_ratio = self.canonical_focal / target_focal | |
# target_img_shape = images[0].shape | |
prob = random.uniform(0, 1) | |
if prob < self.prob: | |
to_random_ratio = random.uniform(self.ratio_range[0], self.ratio_range[1]) | |
else: | |
to_random_ratio = 1.0 | |
label_scale_ratio = 0.0 | |
for i in range(len(images)): | |
img = images[i] | |
label = labels[i] if i < len(labels) else None | |
intrinsic = intrinsics[i].copy() if i < len(intrinsics) else None | |
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None | |
img, label, intrinsic, cam_model, label_scale_ratio = self.random_resize( | |
img, label, intrinsic, cam_model, to_random_ratio) | |
images[i] = img | |
if label is not None: | |
labels[i] = label | |
if intrinsic is not None: | |
intrinsics[i] = intrinsic.copy() | |
if cam_model is not None: | |
cam_models[i] = cam_model | |
if normals != None: | |
reshape_h, reshape_w, _ = images[0].shape | |
for i, norm in enumerate(normals): | |
normals[i] = cv2.resize(norm, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
if other_labels != None: | |
# other labels are like semantic segmentations, instance segmentations, instance planes segmentations... | |
#resize_ratio = target_to_canonical_ratio * to_scale_ratio | |
#reshape_h = int(target_img_shape[0] * resize_ratio + 0.5) | |
#reshape_w = int(target_img_shape[1] * resize_ratio + 0.5) | |
reshape_h, reshape_w, _ = images[0].shape | |
for i, other_label_i in enumerate(other_labels): | |
other_labels[i] = cv2.resize(other_label_i, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
if transform_paras is not None: | |
if 'label_scale_factor' in transform_paras: | |
transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * label_scale_ratio | |
else: | |
transform_paras.update(label_scale_factor = label_scale_ratio) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class RandomEdgeMask(object): | |
""" | |
Random mask the input and labels. | |
Args: | |
images: list of RGB images. | |
labels: list of depth/disparity labels. | |
other labels: other labels, such as instance segmentations, semantic segmentations... | |
""" | |
def __init__(self, mask_maxsize=32, prob=0.5, rgb_invalid=[0,0,0], label_invalid=-1,**kwargs): | |
self.mask_maxsize = mask_maxsize | |
self.prob = prob | |
self.rgb_invalid = rgb_invalid | |
self.label_invalid = label_invalid | |
def mask_edge(self, image, mask_edgesize, mask_value): | |
H, W = image.shape[0], image.shape[1] | |
# up | |
image[0:mask_edgesize[0], :, ...] = mask_value | |
# down | |
image[H-mask_edgesize[1]:H, :, ...] = mask_value | |
# left | |
image[:, 0:mask_edgesize[2], ...] = mask_value | |
# right | |
image[:, W-mask_edgesize[3]:W, ...] = mask_value | |
return image | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
assert len(images[0].shape) == 3 and len(labels[0].shape) == 2 | |
assert labels[0].dtype == np.float | |
prob = random.uniform(0, 1) | |
if prob > self.prob: | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
mask_edgesize = random.sample(range(self.mask_maxsize), 4) #[up, down, left, right] | |
for i in range(len(images)): | |
img = images[i] | |
label = labels[i] if i < len(labels) else None | |
img = self.mask_edge(img, mask_edgesize, self.rgb_invalid) | |
images[i] = img | |
if label is not None: | |
label = self.mask_edge(label, mask_edgesize, self.label_invalid) | |
labels[i] = label | |
if normals != None: | |
for i, normal in enumerate(normals): | |
normals[i] = self.mask_edge(normal, mask_edgesize, mask_value=0) | |
if other_labels != None: | |
# other labels are like semantic segmentations, instance segmentations, instance planes segmentations... | |
for i, other_label_i in enumerate(other_labels): | |
other_labels[i] = self.mask_edge(other_label_i, mask_edgesize, self.label_invalid) | |
if transform_paras is not None: | |
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] | |
new_pad = [max(mask_edgesize[0], pad[0]), max(mask_edgesize[1], pad[1]), max(mask_edgesize[2], pad[2]), max(mask_edgesize[3], pad[3])] | |
transform_paras.update(dict(pad=new_pad)) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class AdjustSize(object): | |
"""Crops the given ndarray image (H*W*C or H*W). | |
Args: | |
size (sequence or int): Desired output size of the crop. If size is an | |
int instead of sequence like (h, w), a square crop (size, size) is made. | |
""" | |
def __init__(self, padding=None, ignore_label=-1, **kwargs): | |
if padding is None: | |
self.padding = padding | |
elif isinstance(padding, list): | |
if all(isinstance(i, numbers.Number) for i in padding): | |
self.padding = padding | |
else: | |
raise (RuntimeError("padding in Crop() should be a number list\n")) | |
if len(padding) != 3: | |
raise (RuntimeError("padding channel is not equal with 3\n")) | |
else: | |
raise (RuntimeError("padding in Crop() should be a number list\n")) | |
if isinstance(ignore_label, int): | |
self.ignore_label = ignore_label | |
else: | |
raise (RuntimeError("ignore_label should be an integer number\n")) | |
def get_pad_paras(self, h, w): | |
pad_h = 32 - h % 32 if h %32 != 0 else 0 | |
pad_w = 32 - w % 32 if w %32 != 0 else 0 | |
pad_h_half = int(pad_h // 2) | |
pad_w_half = int(pad_w // 2) | |
return pad_h, pad_w, pad_h_half, pad_w_half | |
def main_data_transform(self, image, label, intrinsic, cam_model): | |
h, w, _ = image.shape | |
pad_h, pad_w, pad_h_half, pad_w_half = self.get_pad_paras(h=h, w=w) | |
if pad_h > 0 or pad_w > 0: | |
if self.padding is None: | |
raise (RuntimeError("depthtransform.Crop() need padding while padding argument is None\n")) | |
image = cv2.copyMakeBorder(image, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.padding) | |
if label is not None: | |
label = cv2.copyMakeBorder(label, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label) | |
if cam_model is not None: | |
cam_model = cv2.copyMakeBorder(cam_model, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label) | |
if intrinsic is not None: | |
intrinsic[2] = intrinsic[2] + pad_w_half | |
intrinsic[3] = intrinsic[3] + pad_h_half | |
pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half] | |
return image, label, intrinsic, cam_model, pad | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
target_img = images[0] | |
target_h, target_w, _ = target_img.shape | |
for i in range(len(images)): | |
img = images[i] | |
label = labels[i] if i < len(labels) else None | |
intrinsic = intrinsics[i] if i < len(intrinsics) else None | |
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None | |
img, label, intrinsic, cam_model, pad = self.main_data_transform( | |
img, label, intrinsic, cam_model) | |
images[i] = img | |
if label is not None: | |
labels[i] = label | |
if intrinsic is not None: | |
intrinsics[i] = intrinsic | |
if cam_model is not None: | |
cam_models[i] = cam_model | |
if transform_paras is not None: | |
transform_paras.update(dict(pad=pad)) | |
if normals is not None: | |
pad_h, pad_w, pad_h_half, pad_w_half = self.get_pad_paras(h=target_h, w=target_w) | |
for i, normal in enumerate(normals): | |
normals[i] = cv2.copyMakeBorder(normal, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=0) | |
if other_labels is not None: | |
pad_h, pad_w, pad_h_half, pad_w_half = self.get_pad_paras(h=target_h, w=target_w) | |
for i, other_lab in enumerate(other_labels): | |
other_labels[i] = cv2.copyMakeBorder(other_lab, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class RandomHorizontalFlip(object): | |
def __init__(self, prob=0.5, **kwargs): | |
self.p = prob | |
def main_data_transform(self, image, label, intrinsic, cam_model, rotate): | |
if rotate: | |
image = cv2.flip(image, 1) | |
if label is not None: | |
label = cv2.flip(label, 1) | |
if intrinsic is not None: | |
h, w, _ = image.shape | |
intrinsic[2] = w - intrinsic[2] | |
intrinsic[3] = h - intrinsic[3] | |
if cam_model is not None: | |
cam_model = cv2.flip(cam_model, 1) | |
cam_model[:, :, 0] = cam_model[:, :, 0] * -1 | |
cam_model[:, :, 2] = cam_model[:, :, 2] * -1 | |
return image, label, intrinsic, cam_model | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
rotate = random.random() > self.p | |
for i in range(len(images)): | |
img = images[i] | |
label = labels[i] if i < len(labels) else None | |
intrinsic = intrinsics[i] if i < len(intrinsics) else None | |
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None | |
img, label, intrinsic, cam_model = self.main_data_transform( | |
img, label, intrinsic, cam_model, rotate) | |
images[i] = img | |
if label is not None: | |
labels[i] = label | |
if intrinsic is not None: | |
intrinsics[i] = intrinsic | |
if cam_model is not None: | |
cam_models[i] = cam_model | |
if normals is not None: | |
for i, normal in enumerate(normals): | |
if rotate: | |
normal = cv2.flip(normal, 1) | |
normal[:, :, 0] = -normal[:, :, 0] # NOTE: check the direction of normal coordinates axis, this is used in https://github.com/baegwangbin/surface_normal_uncertainty | |
normals[i] = normal | |
if other_labels is not None: | |
for i, other_lab in enumerate(other_labels): | |
if rotate: | |
other_lab = cv2.flip(other_lab, 1) | |
other_labels[i] = other_lab | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class RandomBlur(object): | |
def __init__(self, | |
aver_kernal=(2, 10), | |
motion_kernal=(5, 15), | |
angle=[-80, 80], | |
prob=0.3, | |
**kwargs): | |
gaussian_blur = iaa.AverageBlur(k=aver_kernal) | |
motion_blur = iaa.MotionBlur(k=motion_kernal, angle=angle) | |
zoom_blur = iaa.imgcorruptlike.ZoomBlur(severity=1) | |
self.prob = prob | |
self.blurs = [gaussian_blur, motion_blur, zoom_blur] | |
def blur(self, imgs, id): | |
blur_mtd = self.blurs[id] | |
return blur_mtd(images=imgs) | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
prob = random.random() | |
if prob < self.prob: | |
id = random.randint(0, len(self.blurs)-1) | |
images = self.blur(images, id) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class RGBCompresion(object): | |
def __init__(self, prob=0.1, compression=(0, 50), **kwargs): | |
self.rgb_compress = iaa.Sequential( | |
[ | |
iaa.JpegCompression(compression=compression), | |
], | |
random_order=True, | |
) | |
self.prob = prob | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
if random.random() < self.prob: | |
images = self.rgb_compress(images=images) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class RGB2BGR(object): | |
# Converts image from RGB order to BGR order, for model initialized from Caffe | |
def __init__(self, **kwargs): | |
return | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
for i, img in enumerate(images): | |
images[i] = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class BGR2RGB(object): | |
# Converts image from BGR order to RGB order, for model initialized from Pytorch | |
def __init__(self, **kwargs): | |
return | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
for i, img in enumerate(images): | |
images[i] = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class PhotoMetricDistortion(object): | |
"""Apply photometric distortion to image sequentially, every transformation | |
is applied with a probability of 0.5. The position of random contrast is in | |
second or second to last. | |
1. random brightness | |
2. random contrast (mode 0) | |
3. convert color from BGR to HSV | |
4. random saturation | |
5. random hue | |
6. convert color from HSV to BGR | |
7. random contrast (mode 1) | |
Args: | |
brightness_delta (int): delta of brightness. | |
contrast_range (tuple): range of contrast. | |
saturation_range (tuple): range of saturation. | |
hue_delta (int): delta of hue. | |
""" | |
def __init__(self, | |
brightness_delta=32, | |
contrast_range=(0.5, 1.5), | |
saturation_range=(0.5, 1.5), | |
hue_delta=18, | |
to_gray_prob=0.3, | |
distortion_prob=0.3, | |
**kwargs): | |
self.brightness_delta = brightness_delta | |
self.contrast_lower, self.contrast_upper = contrast_range | |
self.saturation_lower, self.saturation_upper = saturation_range | |
self.hue_delta = hue_delta | |
self.gray_aug = iaa.Grayscale(alpha=(0.8, 1.0)) | |
self.to_gray_prob = to_gray_prob | |
self.distortion_prob = distortion_prob | |
def convert(self, img, alpha=1.0, beta=0.0): | |
"""Multiple with alpha and add beat with clip.""" | |
img = img.astype(np.float32) * alpha + beta | |
img = np.clip(img, 0, 255) | |
return img.astype(np.uint8) | |
def brightness(self, img, beta, do): | |
"""Brightness distortion.""" | |
if do: | |
# beta = random.uniform(-self.brightness_delta, | |
# self.brightness_delta) | |
img = self.convert( | |
img, | |
beta=beta) | |
return img | |
def contrast(self, img, alpha, do): | |
"""Contrast distortion.""" | |
if do: | |
#alpha = random.uniform(self.contrast_lower, self.contrast_upper) | |
img = self.convert( | |
img, | |
alpha=alpha) | |
return img | |
def saturation(self, img, alpha, do): | |
"""Saturation distortion.""" | |
if do: | |
# alpha = random.uniform(self.saturation_lower, | |
# self.saturation_upper) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | |
img[:, :, 1] = self.convert( | |
img[:, :, 1], | |
alpha=alpha) | |
img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR) | |
return img | |
def hue(self, img, rand_hue, do): | |
"""Hue distortion.""" | |
if do: | |
# rand_hue = random.randint(-self.hue_delta, self.hue_delta) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | |
img[:, :, 0] = (img[:, :, 0].astype(int) + rand_hue) % 180 | |
img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR) | |
return img | |
def rgb2gray(self, img): | |
img = self.gray_aug(image=img) | |
return img | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
"""Call function to perform photometric distortion on images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images distorted. | |
""" | |
brightness_beta = random.uniform(-self.brightness_delta, self.brightness_delta) | |
brightness_do = random.random() < self.distortion_prob | |
contrast_alpha = random.uniform(self.contrast_lower, self.contrast_upper) | |
contrast_do = random.random() < self.distortion_prob | |
saturate_alpha = random.uniform(self.saturation_lower, self.saturation_upper) | |
saturate_do = random.random() < self.distortion_prob | |
rand_hue = random.randint(-self.hue_delta, self.hue_delta) | |
rand_hue_do = random.random() < self.distortion_prob | |
# mode == 0 --> do random contrast first | |
# mode == 1 --> do random contrast last | |
mode = 1 if random.random() > 0.5 else 2 | |
for i, img in enumerate(images): | |
if random.random() < self.to_gray_prob: | |
img = self.rgb2gray(img) | |
else: | |
# random brightness | |
img = self.brightness(img, brightness_beta, brightness_do) | |
if mode == 1: | |
img = self.contrast(img, contrast_alpha, contrast_do) | |
# random saturation | |
img = self.saturation(img, saturate_alpha, saturate_do) | |
# random hue | |
img = self.hue(img, rand_hue, rand_hue_do) | |
# random contrast | |
if mode == 0: | |
img = self.contrast(img, contrast_alpha, contrast_do) | |
images[i] = img | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
class Weather(object): | |
"""Apply the following weather augmentations to data. | |
Args: | |
prob (float): probability to enforce the weather augmentation. | |
""" | |
def __init__(self, | |
prob=0.3, | |
**kwargs): | |
snow = iaa.FastSnowyLandscape( | |
lightness_threshold=[50, 100], | |
lightness_multiplier=(1.2, 2) | |
) | |
cloud = iaa.Clouds() | |
fog = iaa.Fog() | |
snow_flakes = iaa.Snowflakes(flake_size=(0.2, 0.4), speed=(0.001, 0.03)) #iaa.imgcorruptlike.Snow(severity=2)# | |
rain = iaa.Rain(speed=(0.1, 0.3), drop_size=(0.1, 0.3)) | |
# rain_drops = RainDrop_Augmentor() | |
self.aug_list = [ | |
snow, cloud, fog, snow_flakes, rain, | |
#wa.add_sun_flare, wa.darken, wa.random_brightness, | |
] | |
self.prob = prob | |
def aug_with_weather(self, imgs, id): | |
weather = self.aug_list[id] | |
if id <5: | |
return weather(images=imgs) | |
else: | |
return weather(imgs) | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
"""Call function to perform photometric distortion on images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images distorted. | |
""" | |
if random.random() < self.prob: | |
select_id = np.random.randint(0, high=len(self.aug_list)) | |
images = self.aug_with_weather(images, select_id) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
def resize_depth_preserve(depth, shape): | |
""" | |
Resizes depth map preserving all valid depth pixels | |
Multiple downsampled points can be assigned to the same pixel. | |
Parameters | |
---------- | |
depth : np.array [h,w] | |
Depth map | |
shape : tuple (H,W) | |
Output shape | |
Returns | |
------- | |
depth : np.array [H,W,1] | |
Resized depth map | |
""" | |
# Store dimensions and reshapes to single column | |
depth = np.squeeze(depth) | |
h, w = depth.shape | |
x = depth.reshape(-1) | |
# Create coordinate grid | |
uv = np.mgrid[:h, :w].transpose(1, 2, 0).reshape(-1, 2) | |
# Filters valid points | |
idx = x > 0 | |
crd, val = uv[idx], x[idx] | |
# Downsamples coordinates | |
crd[:, 0] = (crd[:, 0] * (shape[0] / h) + 0.5).astype(np.int32) | |
crd[:, 1] = (crd[:, 1] * (shape[1] / w) + 0.5).astype(np.int32) | |
# Filters points inside image | |
idx = (crd[:, 0] < shape[0]) & (crd[:, 1] < shape[1]) | |
crd, val = crd[idx], val[idx] | |
# Creates downsampled depth image and assigns points | |
depth = np.zeros(shape) | |
depth[crd[:, 0], crd[:, 1]] = val | |
# Return resized depth map | |
return depth | |
def gray_to_colormap(img, cmap='rainbow', max_value=None): | |
""" | |
Transfer gray map to matplotlib colormap | |
""" | |
assert img.ndim == 2 | |
img[img<0] = 0 | |
mask_invalid = img < 1e-10 | |
if max_value == None: | |
img = img / (img.max() + 1e-8) | |
else: | |
img = img / (max_value + 1e-8) | |
norm = matplotlib.colors.Normalize(vmin=0, vmax=1.1) | |
cmap_m = matplotlib.cm.get_cmap(cmap) | |
map = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap_m) | |
colormap = (map.to_rgba(img)[:, :, :3] * 255).astype(np.uint8) | |
colormap[mask_invalid] = 0 | |
return colormap | |
class LiDarResizeCanonical(object): | |
""" | |
Resize the input to the canonical space first, then resize the input with random sampled size. | |
In the first stage, we assume the distance holds while the camera model varies. | |
In the second stage, we aim to simulate the observation in different distance. The camera will move along the optical axis. | |
""" | |
def __init__(self, **kwargs): | |
self.ratio_range = kwargs['ratio_range'] | |
self.canonical_focal = kwargs['focal_length'] | |
self.crop_size = kwargs['crop_size'] | |
def random_on_canonical_transform(self, image, label, intrinsic, cam_model, to_random_ratio): | |
ori_h, ori_w, _ = image.shape | |
ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0 | |
to_canonical_ratio = self.canonical_focal / ori_focal | |
to_scale_ratio = to_random_ratio | |
resize_ratio = to_canonical_ratio * to_random_ratio | |
reshape_h = int(ori_h * resize_ratio + 0.5) | |
reshape_w = int(ori_w * resize_ratio + 0.5) | |
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
if intrinsic is not None: | |
intrinsic = [self.canonical_focal, self.canonical_focal, intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio] | |
if label is not None: | |
# number of other labels may be less than that of image | |
#label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
label = resize_depth_preserve(label, (reshape_h, reshape_w)) | |
# scale the label and camera intrinsics | |
label = label / to_scale_ratio | |
if cam_model is not None: | |
# Should not directly resize the cam_model. | |
# Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. | |
# cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) | |
return image, label, intrinsic, cam_model, to_scale_ratio | |
def random_on_crop_transform(self, image, label, intrinsic, cam_model, to_random_ratio): | |
ori_h, ori_w, _ = image.shape | |
crop_h, crop_w = self.crop_size | |
ori_focal = (intrinsic[0] + intrinsic[1]) / 2.0 | |
to_canonical_ratio = self.canonical_focal / ori_focal | |
# random resize based on the last crop size | |
proposal_reshape_h = int(crop_h * to_random_ratio + 0.5) | |
proposal_reshape_w = int(crop_w * to_random_ratio + 0.5) | |
resize_ratio_h = proposal_reshape_h / ori_h | |
resize_ratio_w = proposal_reshape_w / ori_w | |
resize_ratio = min(resize_ratio_h, resize_ratio_w) # resize based on the long edge | |
reshape_h = int(ori_h * resize_ratio + 0.5) | |
reshape_w = int(ori_w * resize_ratio + 0.5) | |
to_scale_ratio = resize_ratio / to_canonical_ratio | |
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
if intrinsic is not None: | |
intrinsic = [self.canonical_focal, self.canonical_focal, intrinsic[2]*resize_ratio, intrinsic[3]*resize_ratio] | |
if label is not None: | |
# number of other labels may be less than that of image | |
# label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
label = resize_depth_preserve(label, (reshape_h, reshape_w)) | |
# scale the label and camera intrinsics | |
label = label / to_scale_ratio | |
if cam_model is not None: | |
# Should not directly resize the cam_model. | |
# Camera model should be resized in 'to canonical' stage, while it holds in 'random resizing' stage. | |
# cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) | |
return image, label, intrinsic, cam_model, to_scale_ratio | |
def __call__(self, images, labels, intrinsics, cam_models=None, normals=None, other_labels=None, transform_paras=None): | |
assert len(images[0].shape) == 3 and len(labels[0].shape) == 2 | |
assert labels[0].dtype == np.float | |
target_focal = (intrinsics[0][0] + intrinsics[0][1]) / 2.0 | |
target_to_canonical_ratio = self.canonical_focal / target_focal | |
target_img_shape = images[0].shape | |
to_random_ratio = random.uniform(self.ratio_range[0], self.ratio_range[1]) | |
to_scale_ratio = 0 | |
for i in range(len(images)): | |
img = images[i] | |
label = labels[i] if i < len(labels) else None | |
intrinsic = intrinsics[i] if i < len(intrinsics) else None | |
cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None | |
img, label, intrinsic, cam_model, to_scale_ratio = self.random_on_canonical_transform( | |
img, label, intrinsic, cam_model, to_random_ratio) | |
images[i] = img | |
if label is not None: | |
labels[i] = label | |
if intrinsic is not None: | |
intrinsics[i] = intrinsic | |
if cam_model is not None: | |
cam_models[i] = cam_model | |
if normals != None: | |
reshape_h, reshape_w, _ = images[0].shape | |
for i, normal in enumerate(normals): | |
normals[i] = cv2.resize(normal, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
if other_labels != None: | |
# other labels are like semantic segmentations, instance segmentations, instance planes segmentations... | |
# resize_ratio = target_to_canonical_ratio * to_random_ratio | |
# reshape_h = int(target_img_shape[0] * resize_ratio + 0.5) | |
# reshape_w = int(target_img_shape[1] * resize_ratio + 0.5) | |
reshape_h, reshape_w, _ = images[0].shape | |
for i, other_label_i in enumerate(other_labels): | |
other_labels[i] = cv2.resize(other_label_i, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST) | |
if transform_paras is not None: | |
transform_paras.update(label_scale_factor = 1.0/to_scale_ratio) | |
return images, labels, intrinsics, cam_models, normals, other_labels, transform_paras | |
def build_camera_model(H : int, W : int, intrinsics : list) -> np.array: | |
""" | |
Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map. | |
""" | |
fx, fy, u0, v0 = intrinsics | |
f = (fx + fy) / 2.0 | |
# principle point location | |
x_row = np.arange(0, W).astype(np.float32) | |
x_row_center_norm = (x_row - u0) / W | |
x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W] | |
y_col = np.arange(0, H).astype(np.float32) | |
y_col_center_norm = (y_col - v0) / H | |
y_center = np.tile(y_col_center_norm, (W, 1)).T | |
# FoV | |
fov_x = np.arctan(x_center / (f / W)) | |
fov_y = np.arctan(y_center/ (f / H)) | |
cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2) | |
return cam_model | |
if __name__ == '__main__': | |
img = cv2.imread('/mnt/mldb/raw/62b3ed3455e805efcb28c74b/NuScenes/data_test/samples/CAM_FRONT/n008-2018-08-01-15-34-25-0400__CAM_FRONT__1533152214512404.jpg', -1) | |
H, W, _ = img.shape | |
label = img[:, :, 0] | |
intrinsic = [1000, 1000, W//2, H//2] | |
for i in range(20): | |
weather_aug = Weather(prob=1.0) | |
img_aug, label, intrinsic, cam_model, ref_images, transform_paras = weather_aug([img, ], [label,], [intrinsic,]) | |
cv2.imwrite(f'test_aug_{i}.jpg', img_aug[0]) | |
print('Done') | |